200亿「书生·浦语2.0」正式开源!数推性能比肩ChatGPT,200K超长上下文完美召回
新智元报道
新智元报道
【新智元导读】新一代国产开源大语言模型来了!200K超长上下文「完美」支持,20B版本综合性能全面领先。
就在今天,上海人工智能实验室与商汤科技联合香港中文大学和复旦大学,正式发布新一代大语言模型书⽣·浦语2.0(InternLM2)。
ModelScope:https://modelscope.cn/organization/Shanghai_AI_Laboratory
新一代InternLM2经过2.6万亿token高质量语料训练,包含7B及20B两种参数规格,以及基座、对话等版本。
它可以支持200K超长上下文,约30万字文本,在「大海捞针实验」中实现了完美的召回率。
相较于初代InternLM,新一代大模型轻量级(7B)及中量级(20B)性能在同量级模型中表现优异。尤其在数学推理方面,20B参数模型在GSM8K和MATH评测中性能超越ChatGPT(GPT-3.5)。
研究团队表示,InternLM2的核心理念在于「回归语言建模的本质」,致力于通过提高语料质量及信息密度,实现模型基座语言建模能力获得质的提升。
可以看到,InternLM2在数理、代码、对话、创作等各方面都取得了长足进步,综合性能达到同量级开源模型的领先水平。而上海AI实验室也秉持着「以高质量开源赋能创新」理念,继续提供InternLM2免费商用授权。
此外,为促进AI生态发展,推动大模型在各行业的应用落地,书生·浦源大模型挑战赛同日启动。
赛事由上海市经济和信息化委员会、上海市科学技术委员会、徐汇区人民政府共同指导,上海人工智能实验室(上海AI实验室)主办,上海市人工智能行业协会承办,首期赛事包含行业应用和创新创意两个赛道,即日起面向全球进行场景和赛队征集。
回归语言建模本质,筑牢大模型能力基础
过去一段时间,国内外机构开源了多个优秀的大语言模型,并带来丰富的下游应用,有力推动了全球大模型开源生态的繁荣。大模型应用生态的发展和繁荣是建立在模型基座强大的通用基础能力之上的。
上海AI实验室联合团队研究认为,大模型各项性能提升的基础在于语言建模能力的增强,对于大模型的研究应回归语言建模本质,通过更高质量的语料以及更高的信息密度,筑牢大模型能力基础。
为此,联合团队提出了新一代的数据清洗过滤技术,主要发展了以下几个方面的技术方法:
- 针对性的数据补齐:针对性补充语料,重点加强现实世界知识、数理、代码等核心能力。
目前,浦语背后的数据清洗过滤技术已经历三轮迭代升级,仅使用约60%的训练数据即可达到使用第二代数据训练1T token的性能表现,模型训练效率大幅提升。
第三代数据清洗过滤技术大幅度提升模型训练效率
基于第三代数据清洗过滤技术,InternLM2语言建模能力显著增强。
与第一代InternLM相比,InternLM2在大规模高质量的验证语料上的Loss分布整体左移,表明了其语言建模能力的实质性增强
支持200K超长上下文,「大海捞针」近乎完美
长语境输入及理解能力能够显著拓展大模型的应用场景,比如支持大型文档的处理、复杂的推理演算和实际场景的工具调用等。
然而,大模型有限的上下文长度仍为当前学界及业界面临的重要难题。
为此,InternLM2通过拓展训练窗口大小和改进位置编码,实现了对200K token上下文的支持,能够一次性接受并处理约30万汉字(约五六百页的文档)的输入内容,准确提取关键信息,实现长文本中「大海捞针」。
参考业界范例,研究人员对InternLM2进行了「大海捞针」试验:将关键信息随机插入一段长文本的不同位置并设置问题,测试模型能否从中提取出关键信息。
InternLM2「大海捞针」试验效果
上图展示了InternLM2在不同长度的上下文(横轴)及上下文中不同位置(纵轴)上召回关键信息的准确率(Recall)。红色代表较低的召回准确率,而绿色则代表较高的召回率。
试验结果表明,InternLM2在上下文长度延展到200K时依旧保持了近乎完美的召回成功率,验证了InternLM2对于超长上下文坚实的支持能力。
为测试InternLM2在真实长文本处理任务中的能力,研究人员将一份时长3小时的公开会议录音转录稿输入模型中,并要求InternLM2从中提取出关键信息。
测试结果表明,尽管在未校对的文本中存在较多错别字,但InternLM2仍从中准确提炼出了关键信息,并总结了发言人的主要观点。
InternLM2准确总结「联合国2023年10月2日召开的联合国贸易和发展会议会议记录」
性能全面提升,综合能力领先的开源模型
InternLM2的各项能力获得全面进步,相比于初代InternLM,在推理、数学、代码等方面的能力提升尤为显著,综合能力领先于同量级开源模型。
根据大语言模型的应用方式和用户关注的重点领域,研究人员定义了语言、知识、推理、数学、代码、考试等六个能力维度,在55个主流评测集上对多个同量级模型的表现进行了综合评测。
结果显示,InternLM2的轻量级(7B)及中量级(20B)版本性能在同量级模型中表现优异。
InternLM2的轻量级及中量级版本性能在同量级开源模型中表现优异
下面的表格对比了InternLM2各版本与ChatGPT(GPT-3.5)以及GPT-4在典型评测集上的表现。可以看到,InternLM2只用20B参数的中等规模,即在整体表现上达到了与ChatGPT比肩的水平。
其中,在AGIEval、 BigBench-Hard(BBH)、GSM8K、MATH等对推理能力有较高要求的评测上,InternLM2表现甚至优于ChatGPT。
InternLM2与ChatGPT的评测结果对比
与此同时,综合性能的增强带来了下游任务的全方位能力提升。新发布的InternLM2提供优秀的对话及创作体验,支持多轮任务规划及工具调用,并提供实用的数据分析能力。
对话及创作:更温情、更富想象力
InternLM2不仅在客观性能指标上提升显著,在主观体验上也有明显改善,可以为用户提供优秀的对话和交互体验。
研究测试表明,InternLM2-Chat可以精准地理解和遵循用户意图,具备较强的共情能力和丰富的结构化创作能力。下面展示几个示例:
1. 在严格的格式要求下编制课程大纲
InternLM2设计的课程大纲精准遵循用户要求(比如格式、数量、内容等)
2. 以富有人文关怀的回答开解用户
InternLM2能够在对话中与用户「共情」
3. 展开想象力,编写《流浪地球3》的剧本
InternLM2设计的具备充满丰富的合理想象,比如外星遗迹、量子纠缠的引入等。同时整个故事表现了人类面对危机时的勇气和团结精神
对话和创造的体验进步的原因,一方面是基础语言能力的显著增强,另一方面也得益于微调技术的提升。
在微调的过程中,InternLM2不仅使用了经过第三代数据清洗过滤技术处理的指令微调语料,同时也采用了更强的Online RLHF。
期间,研究人员还对奖励模型和对话模型进行了三轮迭代更新,每一轮更新均针对前一轮模型的表现更新偏好数据与提示词。
在奖励模型训练(RM)和近端策略优化(PPO)阶段,研究人员均衡采用各类提示词,不仅提高了对话的安全性,也提升了用户体验。
工具调用:能力升级,更精准的工具选用,更可靠的多步规划
基于更强大、更具泛化性的指令理解、工具筛选与结果反思等能力,InternLM2可支持复杂智能体的搭建,支持对工具进行多轮有效调用及多步骤规划,完成复杂任务。
为了便于评估,联合团队针对多种任务构建了细粒度工具调用评测集T-Eval。
项目地址:https://open-compass.github.io/T-Eval/
结果显示,InternLM2-Chat-7B在该评测集上的表现已经超越了Claude-2.1和目前的开源模型,性能接近GPT-3.5。
InternLM2工具调用能力全面提升
通过工具的调用,大语言模型便可以利用搜索、计算、代码解释器等来获取知识并处理更复杂的问题,从而拓展应用边界。
针对模型调用工具流程,研究人员还实施了细粒度的拆解和分析,针对规划、推理、工具选择、理解、执行、反思等步骤进行了针对性增强和优化。
数理推理:会做题,还会可视化分析
微信扫码关注该文公众号作者