Bendi新闻
>
从文字模型到世界模型!Meta新研究让AI Agent理解物理世界

从文字模型到世界模型!Meta新研究让AI Agent理解物理世界

8月前


MLNLP社区是国内外知名的机器学习与自然语言处理社区,受众覆盖国内外NLP硕博生、高校老师以及企业研究人员。
社区的愿景是促进国内外自然语言处理,机器学习学术界、产业界和广大爱好者之间的交流和进步,特别是初学者同学们的进步。
转载自 | 新智元
编辑 | Mindy

LLM已经可以理解文本和图片了,也能够根据它们的历史知识回答各种问题,但它们或许对周围世界当前发生的事情一无所知。
现在LLMs也开始逐步学习理解3D物理空间,通过增强LLMs的「看到」世界的能力,人们可以开发新的应用,在更多场景去获取LLMs的帮助。
AI Agent,比如机器人或是智能眼镜,它们可以通过感知和理解环境来回答一些开放性问题,比如「我把钥匙放哪里了?」
这样的AI Agent需要利用视觉等感知模式来理解其周围环境,并能够用清晰的日常语言有效地与人交流。
这类似于构建一个「世界模型」,即AI Agent可以对外部世界产生它自己的内部理解方法,并能够让人类通过语言查询。
这是一个长期的愿景和一个有挑战的领域,也是实现人工通用智能的重要一步。
Meta的新研究OpenEQA(Embodied Question Answering)框架,即开放词汇体验问答框架,为我们探索这个领域提供了新的可能。

EQA是什么?

EQA(Embodied Question Answering)是一种工具,用于检查AI Agent是否真正理解周围世界发生的事情。
毕竟,当我们想要确定一个人对概念的理解程度时,我们会问他们问题,并根据他们的答案形成评估。我们也可以对实体AI Agent做同样的事情。
比如下图的一些问题实例:

[物体识别]
问:椅子上的红色物体是什么?
答:一个背包
[属性识别]
问:在所有的椅子中,这把椅子的独特颜色是什么?
答:绿色
[空间理解]
问:这个房间可以容纳10个人吗?
答:可以
[物体状态识别]
问:塑料水瓶是开着的吗?
答:不是
[功能推理]
问:我可以用铅笔在什么东西上写?
答:纸
[世界知识]
问:最近有学生在这里吗?
答:有
[物体定位]
问:我的未喝完的星巴克饮料在哪里?
答:在靠前的白板旁边的桌子上
除此之外,EQA也更加有直接的应用。
比如,当你准备出门却找不到工卡时,就就可以问智能眼镜它在哪里。而AI Agent则会通过利用其情节记忆回答说徽章在餐桌上。
或者如果你在回家的路上饿了,就可以问家庭机器人是否还剩下水果。根据其对环境的主动探索,它可能会回答说水果篮里有成熟的香蕉。
这些行为看上去很简单,毕竟LLMs在许多人认为具有挑战性的任务中表现出色,比如通过SAT或律师考试。
但现实是,即使是今天最先进的模型,在EQA方面也很难达到人类的表现水平。
这也是为什么Meta同时发布了OpenEQA基准测试,让研究人员可以测试他们自己的模型,并了解它们与人类的表现相比如何。

OpenEQA:面向AI Agent的全新基准

开放词汇体验问答(OpenEQA)框架是一个新的基准测试,通过向AI Agent提出开放词汇问题来衡量其对环境的理解。
该基准包含超过1600个非模板化的问题和答案对,这些问题和答案来自人类注释者,代表了真实世界的使用情况,并提供了180多个物理环境的视频和扫描指针。
OpenEQA包含两个任务:
(1)情节记忆EQA,在这个任务中,一个实体的AI Agent根据其对过去经历的回忆回答问题。
(2)主动EQA,在这个任务中,AI Agent必须在环境中采取行动来收集必要的信息并回答问题。
OpenEQA还配备了LLM-Match,这是一种用于评分开放词汇答案的自动评估指标。
下方是LLM-Match打分的流程,通过问题和场景的输入,AI大模型会给出回答,该回答会去和人类的回答作对比,然后得到相应的分数。

现阶段VLM的表现

一般来说,AI Agent的视觉能力是借助于视觉+语言基础模型(VLM)。
研究员使用OpenEQA来评估了几种最先进的VLM,发现即使是性能最好的模型(如GPT-4V达到48.5%),与人类的表现(85.9%)之间也存在着显著差距。
值得注意的是,对于需要空间理解的问题,即使是最好的VLM也几乎是「盲目」的,即它们的表现几乎不比仅文本模型更好。
例如,对于「我坐在客厅的沙发上看电视。我的身后是哪个房间?」这个问题,模型基本上是随机猜测不同的房间,没有从视觉情景记忆中获得对空间的理解。
这说明VLM其实是回归到文本中去捕捉关于世界的先验知识,以此来回答视觉问题。视觉信息并没有给它们带来实质性的好处。
这也说明,AI Agent在目前这个阶段,还达不到能完全理解物理世界的能力。
但气馁还为时过早,OpenEQA仅仅是第一个开放词汇的EQA基准。
通过OpenEQA将具有挑战性的开放词汇问题与以自然语言回答的能力结合起来,可以激发更多的研究,帮助AI理解并交流关于它所看到的世界的信息,也有助于研究人员跟踪多模态学习和场景理解的未来进展。
也不是没有可能,突然哪天AI Agent又给我们带来一个大惊喜呢?
参考资料:
https://ai.meta.com/blog/openeqa-embodied-question-answering-robotics-ar-glasses/

技术交流群邀请函

△长按添加小助手

扫描二维码添加小助手微信

请备注:姓名-学校/公司-研究方向
(如:小张-哈工大-对话系统)
即可申请加入自然语言处理/Pytorch等技术交流群

关于我们

MLNLP 社区是由国内外机器学习与自然语言处理学者联合构建的民间学术社区,目前已经发展为国内外知名的机器学习与自然语言处理社区,旨在促进机器学习,自然语言处理学术界、产业界和广大爱好者之间的进步。
社区可以为相关从业者的深造、就业及研究等方面提供开放交流平台。欢迎大家关注和加入我们。


微信扫码关注该文公众号作者

来源:机器学习算法与自然语言处理

相关新闻

离世界模型更近一步!Meta开源OpenEQA,评估AI Agent情景理解能力特稿丨从一片空白到世界首台!让废弃物逆袭变“黑金”ICML 2024爆火演讲!Meta等揭秘大模型内心世界:不同于人类的2级推理到世界工厂去!一场大模型的产业变革正在发生Reasoning3D:用大语言模型开启3D世界理解与交互的新篇章首个开源世界模型!百万级上下文,长视频理解吊打GPT-4,UC伯克利华人一作揭秘Sora:用大语言模型的方法理解视频,实现了对物理世界的“涌现”今日Arxiv最热NLP大模型论文:AllenAI最新研究:让AI从简单学起,竟然能解决难题?ICML 2024演讲爆火!Meta朱泽园揭秘大模型内心世界:不同于人类的2级推理从短剧到 AI 大模型,新兴行业如何让组织「跟上」业务?从专用到通用-预训练大模型和AI agent,浅谈人工智能的趋势和展望从20亿数据中学习物理世界,基于Transformer的通用世界模型成功挑战视频生成世界模型又近了?MIT惊人研究:LLM已模拟现实世界,绝非随机鹦鹉!AI大模型之路 第三篇:从零实现词嵌入模型,加深理解!机器人,才是AI世界模型的星辰大海世界模型也扩散!训练出的智能体竟然不错李飞飞解读创业方向「空间智能」,让AI真正理解世界让AI进入物理世界,首届中国具身智能大会展望智能新纪元GPT-4不是世界模型,LeCun双手赞同!ACL力证LLM永远无法模拟世界中国版Sora震撼登场,原生16秒直出超清视频!国产黑马火了,世界模型签约多个大客户Sora世界模型 与 OpenAI宫斗戏 - AI到底有多强大?英伟达吞噬世界!新架构超级GPU问世,AI算力一步提升30倍经典|大温周边10条顶级徒步路线!从松林到瀑布!用脚丈量世界!3D版Sora来了?UMass、MIT等提出3D世界模型,具身智能机器人实现新里程碑
logo
联系我们隐私协议©2024 bendi.news
Bendi新闻
Bendi.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Bendi.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。