Bendi新闻
>
扩散模型和Transformer引爆时序方向!

扩散模型和Transformer引爆时序方向!

6月前

时空预测引领了新的热点,时间序列预测领域的首个大模型 TimeGPT 引起业界热议,Transformer+时序,扩散模型+时序更是顶会新方向大热“种子”选手,时序+多方向正在成为这个AI界瞩目的黑马!


本文整理了时间序列的时序预测 / 时序-Transformer / 时序-大模型 / 时序-扩散四大方向的最新论文204篇。

扫码回复“时序”领204篇论文合集



时间序列预测论文


ICLR 2024 

ClimODE: Climate Forecasting With Physics-informed Neural ODEs


AAL 2024

MSGNet: Learning Multi-Scale Inter-Serjes Correlations for Multivariate Time Series Forecasting


NeurIPS 2023

Frequency-domain MLPs are More Effective Learners in Time Series Forecasting


ICML 2023

Learning Deep Time-index Models for Time Series Forecasting 


KDD 2023

TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting 


因篇幅有限 仅展示前5篇


扫码回复“时序”领204篇论文合集



时间序列+transformer必读论文


1.iTransformer: InvertedTransformers Are Effective for Time Series Forecastina


2.Pathformer: Multi- Scale Transformers  With Adaptive Pathways For Time Series Forecasting


3.SCALEFORMER: ITERATIVE MULTI-SCALE REFINING TRANSFORMERS FOR TIME

SERIESFORECASTING


4.InParformer: Evolutionary Decomposition Transformers with Interactive Parallel Attentionfor LongTerm Time Series Forecasting


5.ContiFormer: Continuous-Time Tansformer for Irreqular Time Series Modeling


因篇幅有限 仅展示前5篇

扫码回复“时序”领204篇论文合集



深度学习+时间序列预测必读论文


卷积神经网络方法(4种算法模型)


1.CNN

Recent advances in convolutional neural networks


2.WaveNet-CNN

Conditional time series forecasting with convolutional neural networks


3.Kmeans-CNN

Short-term load forecasting in smart grid: a combined CNN and K-means clustering approach


4.TCN

An empirical evaluation of generic convolutional and recurrent networks for sequence modeling

因篇幅有限 仅展示前4篇


循环神经网络方法(3种算法模型)


1.RNN

Bidirectional recurrent neural networks


2.LSTM(长短期记忆网络)

Long short-term memory


3.GRU(门控循环单元)

Learning phrase representations using RNN encoder- decoder for statistical machine translation


Transformer方法(11种算法模型)


1.Transformer

Attention-based models for speech recognition


2.BERT

BERT: pre-training of deep bidirectional transformers for language understanding


3.AST

Adversarial sparse transformer for time series forecasting


4.Informer

Informer: beyond efficient transformer for long sequence time-series forecasting


因篇幅有限 仅展示部分


扫码回复“时序”领204篇论文合集



时间序列新突破:大模型+时间序列


大模型处时间序列


1.基于Promtpt的方法

Leveraging Language Foundation Models for HumanMobility Forecasting


2.将时间序列进行离散化处理

AudioLM: a Language Modeling Approach to Audio Generation


3.时间序列-文本对齐代表论文

Open Vocabulary Electroencephalography-To-Text Decoding and Zero-shot Sentiment Classification


4.引入视觉信息

Leveraging Vision-Language Models for Granultar Market Change Prediction


5.大模型工具

Unleashing the Power of  Shared Label Structures for Human Activity Recognition


训练时间序列领域大模型

TimetGPT-1


扫码回复“时序”领204篇论文合集


针对目前的大热时序,我们请来了顶会审稿人chichi老师解读时空/时序预测研究现状与近期热点。


课程大纲:


- 以GNN为主的时空预测模型 

  • 经典GNN时空预测算法(如STGCN, GraphWaveNet) 

  • 近两年GNN时空预测算法 

  • 近期GNN时空预测算法研究热点


- 以Transformer为主的时序预测模型 

  • 经典Transformer时序预测算法(如Autoformer,Fedformer)

  • 近两年Transformer时序预测算法 

  • 近期Transformer时序预测算法研究热点


- LLM在时空/时序预测上的应用

  • 微调LLM做时空时序预测

  • 语言增强的时序/时空预测模型

  • LLM做时序预测的未来挑战与研究方向


- 针对时序新热点和应用总结


扫码解锁

时序最新热点解读直播课


另外,我们准备了32节时间序列系列课程基础上课程分为五个模块。


  • 模块一基础认识数据科学家

  • 模块二进阶时间序列预测概论+论文和代码讲解

  • 模块三项目实战基于股价和零售的时序项目实战

  • 模块四比赛实战数据科学入门赛+回答准确性预测赛

  • 模块五时序前沿前沿机器学习与时序+时序分析任务与最新应用场景


0.01元解锁《时间序列系列课》

32节课+37h+部分课件+部分课堂作业及代码



一、时序课程介绍


01- 认识数据科学家

了解数据科学家的概念,岗位分布、职责、技能、薪资、职业发展路线等  

—课程时长:1小时



02-时间序列预测基础

1:时间序列预测入门

2:时间序列预测代码实践

3:Forecasting at Scale论文讲解+代码讲解

—课程时长:6小时


03-时序项目实战

1:夯实算法基础、熟悉算法原理,通过代码实操解决问题

2:系统掌握时序分析方法以及预测方法

—课程时长:8小时



04-两场时序比赛实战

1:数据科学入门赛

2:回答准确性预测赛


—课程时长:20小时


05-时序前沿项目

前沿机器学习与时序

时序分析任务与最新应用场景

—课程时长:2小时



这次更新的时序课程时长37小时,总共32节0.01元即可解锁。

0.01元解锁《时间序列系列课》

32节课+37h+部分课件+部分课堂作业及代码






微信扫码关注该文公众号作者

来源:CVer

相关新闻

最大Mamba和扩散模型微信群!TimeGPT首个时序大模型引爆新热点!顶流Mamba和扩散模型微信群!爆火扩散模型和3DGS微信群成立!爆火Mamba和扩散模型微信群来了!扩散模型和多模态微信群成立!扩散模型和多模态学习微信群来了!扩散模型和多模态学习微信群成立!中山大学和字节发布「视频虚拟试穿」扩散模型VITON-DiT,一键生成换装后视频!ECCV 2024 | ZigMa:Mamba遇见扩散模型!强强联合!首个4D视频生成扩散模型!数分钟实现4D内容生成,超81K优质数据集已开源Diffusion4D:首个4D视频生成扩散模型!数分钟内实现4D内容生成,超81K的4D数据集已开源!超越扩散模型!自回归新范式仅需2.9秒就生成高质量图像,中科大哈工大度小满出品超越扩散模型!度小满、中科大等联合提出全新自回归通用文生图模型Mamba遇见扩散模型!DiM:无需微调,高分辨图像生成更高效!ICML 2024 | 通过随机微分方程统一贝叶斯流网络和扩散模型挺看好的一个学妹也在学扩散模型!世界模型也扩散!训练出的智能体竟然不错高效涨点!用Transformer模型发Nature子刊(文末送书)Mamba和Transformer合体!Jamba来了:超越Transformer!性能突破Transformer!Mamba引爆AI圈Falcon Mamba来了!首个无注意力大模型!再次挑战Transformer!图灵奖得主Bengio团队新作:注意力可视为RNN!新模型媲美TransformerGPT-4级别模型惨遭泄露!引爆AI社区,“欧洲版OpenAI”下场认领
logo
联系我们隐私协议©2024 bendi.news
Bendi新闻
Bendi.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Bendi.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。