2024,万众瞩目的行业大模型如何落地?
大模型下半场将更聚焦在垂直化应用以及生态化发展。
ITValue
离大模型横空出世已经过去一年有余,在AI大模型的浪潮下,各大科技企业争先恐后的推出了自家的大模型产品。与此同时,各行业企业也对大模型保持着高度关注,一些其他行业的企业也都纷纷跨界布局大模型相关产品。
如果说,各大厂商纷纷推出大模型产品形成“百模大战”的局势,是大模型这场“战役”的上半场的话,那么这场“战役”的下半场将更聚焦在大模型的垂直化应用以及生态化发展。
从通用大模型
《北京市人工智能行业大模型创新应用白皮书(2023年)》中显示,截至2023年10月,我国10亿参数规模以上的大模型厂商及高校院所共计254家,分布于20余个省市/地区。商业咨询机构爱分析的报告称,2023年中国大模型市场规模约为50亿元,预计到2024年这一数字将达到120亿元。
显然,2024年,大模型将继续其火热的现象,进一步渗透到各行各业的数字化进程中。
大模型真正的价值在于行业侧的应用落地,就目前业内对大模型的认知来看,绝大多数人对大模型相关产品的发展观点类似于互联网——消费级只是开始,产业级价值更大。但就如同互联网一样,消费互联网发展迅速,甚至已经接近“天花板”;产业互联网也仅是近年来在政策引导,数字技术驱动下,逐步发展提速。
大模型的发展与互联网的发展类似。回看刚刚过去的2023年,以ChatGPT为代表的语言大模型发展迅速,除了ChatGPT、必应以外,国内众多厂商也纷纷布局,包括华为、阿里、百度、京东、科大讯飞、商汤等在内的众多科技公司也都积极布局,纷纷推出了各自的大模型产品。
不过回看这些大模型产品,大多是聚焦C端,也就是终端用户的产品,为用户提供了办公、生活上的辅助。
不过,企业对于大模型产品还是保持开放的态度,据IBM商业价值研究院最近发布的调研报告显示:有四分之三的受访CEO认为,部署先进的生成式人工智能将为企业带来竞争优势。
大模型真正的价值是:产业侧应用的落地,也就是行业级大模型产品成熟度的提高。据市场研究机构预测,到2025年,全球生成式AI市场规模将达到100亿美元以上。其中,企业级生成式AI市场将占据相当大的份额,成为最大的应用领域之一。
行业大模型是指针对特定行业或领域的大模型,这种模型针对特定领域的任务进行了优化和定制。相比通用大模型,行业大模型专业性更强、性能更优。不过行业大模型在发展的过程中,与通用大模型也存在着不少差别。
医疗、法律、金融等行业
智源研究院大模型行业应用负责人周华曾对钛媒体表示,现阶段,容错性比较高的通用领域大模型成熟度较高,在类似智能客服、文档处理等方面能够发挥更多辅助作用,还有通用领域的文生图应用,以及通过检索增强技术缓解部分幻觉问题的专业领域应用,都是目前企业比较好落地的一些应用场景。
无独有偶,IEEE标准协会新标准立项委员会副主席兼IEEE数字金融与经济标准委员会主席林道庄也有着相似的看法,林道庄表示,目前,大模型的应用主要集中在“三产”(服务业)居多,重点是辅助人更快、更好地服务其他人,而行业级的大模型也有望在服务业相关领域率先落地成熟度较高的应用。
就目前的发展现状来看,行业大模型发展较快的行业主要有金融、医疗、法律等。
金融行业方面,2023年3月,彭博首度针对金融业推出大型语言模型BloombergGPT,引发市场对金融垂直领域大模型的关注;6月,哥伦比亚大学联合上海纽约大学推出FinGPT 。
在国内,同年7月,华为全新发布盘古大模型,金融行业大模型正是其中数个行业通用大模型之一;同年9月,蚂蚁集团正式发布自研“蚂蚁基础大模型”,以及在此基础上进行定制的“蚂蚁金融大模型”。
虽然众多具备大模型能力的公司都在积极布局金融行业大模型产品,不过基于金融行业的特殊性——对安全合规要求极高,大模型在金融行业具备完全成熟落地的能力仍需时日。
张劲曾对钛媒体表示,金融行业不同于其他行业,其监管要求极高,从技术上看,像贷款审核等业务其实已具备初步落地的技术能力,但因为安全合规的要求,大模型只能在其中起到解放生产力的辅助作用。
现阶段,大模型在金融行业的应用主要还是集中在风险评估和管理,以及知识图谱平台搭建方面。在风险评估方面,大模型可以通过分析大量的历史数据和实时信息,预测市场风险、评估信用风险等,为金融机构提供更加准确和及时的风险管理决策支持。
另一方面,将大模型与知识图谱平台结合,用大模型代替NLP技术,金融机构可以在提升效率的同时,提升风控水平。
除了在金融行业有望在今年有较成熟的应用场景出现以外,林道庄对钛媒体表示,像医疗、法律咨询、教培、娱乐等风险要求较低、偏服务的行业,在今年有望有较多成熟的应用场景落地。“在2024年,大模型将会在一些有人辅助校验、风险及精准程度要求较低的行业落地,通过大模型辅助人类去进行工作,可以使更多人享受到更好的服务。但还远不到代替人的能力。”林道庄强调。
以医疗行业为例,通过行业大模型对大量医疗数据的学习和分析,可以自动识别病变特征,辅助医生进行疾病诊断,提高诊断准确率与诊断效率。对此,林道庄表示,现阶段,我国医疗资源比较紧缺,许多人排了很久的队才能看上病,而医生也很忙,通过大模型的辅助,能帮助医生快速的识别诸如X光片、CT等病历,从而大幅提升医生工作效率,也能降低患者等待的时间。“对于医疗、法律及翻译服务等这类信息或能力严重不对称的行业,大模型的介入将大大提高服务提供的效率,推动服务流程的标准化。”林道庄强调。
除“增效”以外,大模型在医疗行业的落地还可以帮助患者和医院实现“降本”,通过自动化和智能化的医疗辅助系统,可以降低医疗成本,提高医疗服务的效率和质量。
另一方面,行业大模型在医疗行业还可以帮助医生优化治疗方案。通过大模型对对患者病情、病史、药物过敏等情况进行综合分析,为医生提供更加全面和个性化的治疗方案,提高治疗效果。
在林道庄看来,行业大模型能率先落地的垂直行业具有一个普遍的共性——知识密集型行业,“行业大模型能率先落地的行业一定是可以通过知识密集提供价值的行业,”林道庄指出,“某种程度上讲,通过知识收集、知识管理,实现辅助人生成内容、提出决策建议,而不是代替人的目标。”
在医疗、金融等行业之外,大模型在诸如工业、制造业等行业的落地还仍需时日。对此,周华对钛媒体表示,现阶段,大模型主要的能力还是体现在文字、文档处理,一般性的聊天和较浅显的专业问答方面,以及通用视觉领域的问答和生成方面,对于逻辑推理要求和准确性要求高的专业语言领域,涉及学科和工程相关图片、视频识别的专业视觉领域,以及“文生视频”等能力仍需技术迭代,“这种具备多模态能力的大模型产品目前仍难以在行业侧的落地应用的能力,”周华如是说,“2024年,多模态模型将成为大模型领域各大厂商角逐的焦点。而随着多模态模型成熟度不断变高,会有更多的行业应用场景出现。”
安全依旧“不容忽视”
行业大模型在落地应用的过程中,企业也会遇见很多问题,除了大模型的“幻觉”问题以外,最大的一个问题就是安全的问题。
而对于几乎所有企业来说,选择应用数字技术的时候,所有一切的前提就是——安全。企业在享受AIGC带来的技术红利的过程中,对于安全的考虑也将成为AIGC发展的一个重要赛道。
微信扫码关注该文公众号作者