局部余弦相似度大,全局余弦相似度一定也大吗?
本文我们关心两个向量的余弦相似度。如果两个大向量的维度被拆成了若干组,同一组对应的子向量余弦相似度都很大,那么两个大向量的余弦相似度是否一定就大呢?答案是否定的。特别地,这还跟著名的“辛普森悖论”有关。
但问题来了,正如本文开头所说,模型的参数有不同的拆分方式,我们是将模型所有参数当成一个大向量来算更新向量与梯度的余弦(全局),还是每一层、每个参数单独来算(局部)?笔者两者都做了,并且对局部余弦做了截断(保证每个参数对应的更新向量与梯度的余弦大于某个正阈值),然后发现全局居然小于该阈值。初见之下感觉比较意外,于是简单分析了一番。
(再次强调,以上证明都是在 的假设下完成的,如果存在小于 0 的情况,则结论可能需要稍加改动。)
上图中,蓝色数据完全在同一条直线上,而且斜率为正,所以相关系数为 1,红色数据也是如此,它们在自己的批次内都是“完全正线性相关”。但是将数据合起来后,如果非要用一条直线拟合,那么只能是虚线,而且斜率为负,即变成了负相关。这就构成了“辛普森悖论”的一个经典例子。
本文简单讨论了高维向量的局部余弦相似度与全局余弦相似度之间的关系,并进一步讨论了与之相关的“辛普森悖论”。
参考文献
[1] https://en.wikipedia.org/wiki/Simpson%27s_paradox
更多阅读
#投 稿 通 道#
让你的文字被更多人看到
如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。
总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。
PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析、科研心得或竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。
📝 稿件基本要求:
• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注
• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题
• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算
📬 投稿通道:
• 投稿邮箱:[email protected]
• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者
• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿
△长按添加PaperWeekly小编
🔍
现在,在「知乎」也能找到我们了
进入知乎首页搜索「PaperWeekly」
点击「关注」订阅我们的专栏吧
微信扫码关注该文公众号作者