Bendi新闻
>
OpenAI新模型用的嵌入技术被网友扒出来了!

OpenAI新模型用的嵌入技术被网友扒出来了!

10月前

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【CV算法和求职】交流群

扫描下方二维码,加入CVer学术星球可以获得最新顶会/顶刊上的论文ideaCV从入门到精通资料,及最前沿应用!发论文搞科研,强烈推荐!

转载自:云头条 | 编辑:蛋酱

学起来吧。

前几天,OpenAI 来了一波重磅更新,一口气宣布了 5 个新模型,其中就包括两个新的文本嵌入模型。


我们知道,嵌入是表示自然语言或代码等内容中概念的数字序列。嵌入使得机器学习模型和其他算法更容易理解内容之间的关联,也更容易执行聚类或检索等任务。


使用更大的嵌入(比如将它们存储在向量存储器中以供检索)通常要比更小的嵌入消耗更高的成本、以及更多的算力、内存和存储。而 OpenAI 此次推出的两个文本嵌入模型分别是更小且高效的 text-embedding-3-small 模型和更大且更强大的 text-embedding-3-large 模型。


这两个新嵌入模型都使用一种技术进行训练,允许开发人员权衡使用嵌入的性能和成本。具体来说,开发者通过在 dimensions API 参数中传递嵌入而不丢失其概念表征属性,从而缩短嵌入(即从序列末尾删除一些数字)。例如在 MTEB 基准上,text-embedding-3-large 可以缩短为 256 的大小, 同时性能仍然优于未缩短的 text-embedding-ada-002 嵌入(大小为 1536)。


这一技术应用非常灵活:比如当使用仅支持最高 1024 维嵌入的向量数据存储时,开发者现在仍然可以使用最好的嵌入模型 text-embedding-3-large 并指定 dimensions API 参数的值为 1024,使得嵌入维数从 3072 开始缩短,牺牲一些准确度以换取更小的向量大小。


OpenAI 所使用的「缩短嵌入」方法,随后引起了研究者们的广泛注意。


人们发现,这种方法和 2022 年 5 月的一篇论文所提出的「Matryoshka Representation Learning」方法是相同的。



OpenAI 的新嵌入模型更新背后隐藏的是 @adityakusupati 等人提出的一种很酷的嵌入表征技术。


而 MRL 的一作 Aditya Kusupati 也现身说法:「OpenAI 在 v3 嵌入 API 中默认使用 MRL 用于检索和 RAG!其他模型和服务应该很快就会迎头赶上。」


那么 MRL 到底是什么?效果如何?都在下面这篇 2022 年的论文里。


MRL 论文介绍


  • 论文标题:Matryoshka Representation Learning

  • 论文链接:https://arxiv.org/pdf/2205.13147.pdf


研究者提出的问题是:能否设计一种灵活的表征方法,以适应计算资源不同的多个下游任务?


MRL 通过以嵌套方式对 O (log (d)) 低维向量进行显式优化在同一个高维向量中学习不同容量的表征,因此被称为 Matryoshka「俄罗斯套娃」。MRL 可适用于任何现有的表征 pipeline,并可轻松扩展到计算机视觉和自然语言处理中的许多标准任务。


图 1 展示了 MRL 的核心理念以及所学习 Matryoshka 表征的自适应部署设置:


Matryoshka 表征的第一个 m-dimensions(m∈[d])是一个信息丰富的低维向量,不需要额外的训练成本,其精确度不亚于独立训练的 m 维表征法。Matryoshka 表征的信息量随着维度的增加而增加,形成了一种从粗到细的表征法,而且无需大量的训练或额外的部署开销。MRL 为表征向量提供了所需的灵活性和多保真度,可确保在准确性与计算量之间实现近乎最佳的权衡。凭借这些优势,MRL 可根据精度和计算约束条件进行自适应部署。

在这项工作中,研究者将重点放在了现实世界 ML 系统的两个关键构件上:大规模分类和检索。


在分类方面,研究者使用了自适应级联,并使用由 MRL 训练的模型产生的可变大小表征,从而大大降低了达到特定准确率所需的嵌入式平均维数。例如,在 ImageNet-1K 上,MRL + 自适应分类的结果是,在精度与基线相同的情况下,表征大小最多可缩小 14 倍。


同样地,研究者在自适应检索系统中也使用了 MRL。在给定一个查询的情况下,使用查询嵌入的前几个 dimensions 来筛选检索候选对象,然后连续使用更多的 dimensions 对检索集进行重新排序。与使用标准嵌入向量的单次检索系统相比,这种方法的简单实现可实现 128 倍的理论速度(以 FLOPS 计)和 14 倍的墙上时钟时间速度;需要注意的是,MRL 的检索精度与单次检索的精度相当(第 4.3.1 节)。


最后,由于 MRL 明确地学习了从粗到细的表征向量,因此直观地说,它应该在不同 dimensions 之间共享更多的语义信息(图 5)。这反映在长尾持续学习设置中,准确率最多可提高 2%,同时与原始嵌入一样稳健。此外,由于 MRL 具有粗粒度到细粒度的特性,它还可以用作分析实例分类难易程度和信息瓶颈的方法。


更多研究细节,可参考论文原文。

快点击进入—>【CV算法和求职】交流群


计算机视觉技术交流群成立

扫描下方二维码,或者添加微信:CVer444,即可添加CVer小助手微信,便可申请加入CVer-计算机视觉微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF等。


一定要备注:研究方向+地点+学校/公司+昵称(如目标检测+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

▲扫码或加微信号: CVer444,进交流群


CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集近万人!


扫码加入星球学习


▲点击上方卡片,关注CVer公众号

整理不易,请点赞和在看

微信扫码关注该文公众号作者

来源:CVer

相关新闻

OpenAI新模型用的嵌入技术被网友扒出来了八卦|吸引“最美星二代”的男人,被扒出来了!吸引“最美星二代”的男人,被扒出来了!A-50被击落,俄军工技术的底裤都被扒了!凯特商店现身12小时后,“替身”名字都被扒出来了!细数王室这3个月的骚操作,不怪人不信...逼近GPT-4的新模型发布!「欧洲版OpenAI 」联手微软,却被质疑违背初心OpenAI藏了1年多的技术正式公开!15秒素材克隆声音,HeyGen也在用抵制!被骂惨了的澳洲内衣品牌!只因为用跨性别模特展示女性内衣…网友:我们不都是人吗?套壳丑闻让斯坦福AI Lab主任怒了!抄袭团队2人甩锅1人失踪、前科经历被扒,网友:重新认识中国开源模型好消息:OpenAI 突然发了新模型!坏消息:只是纠错,没你想得逆天痛心!两驴友被冲走后续,现场细节被扒,网友:太不专业了!15 秒音频即可“复制”原声!但OpenAI 担心新语音模型被滥用而限制发行傻眼!加拿大超市卖的葱被切掉一截!网友怒了:耽误我自己种葱!程序员窃喜!卡了大模型脖子的Json输出,OpenAI终于做到了100%正确网红晒在Costco的骚操作 被网友们骂惨了!谁才是游客? 加拿大人秒识别外来者墨尔本华人大洋路遇险,紧急求助!网友急疯,AI也被请出来了新盘点!COSTCO限量商务版超市+传统店,折扣新合集来了!吃的、用的、穿的、一站搞定!凯特王妃现身12小时后,“替身”都被扒了!王室这3个月的骚操作,难怪没人信....[吃瓜]“凯特现身”了 面带笑容!结果网友连替身名字都扒出来了……第一家跟OpenAI签约用GPT的大学出现了!为啥是ASU?OpenAI爆炸更新:GPT-4免费了!新模型GPT-4o发布,视觉、语音能力大幅增强,速度起飞,API打骨折薛之谦演唱会“绿帽”大瓜!撒谎的美女,“底裤”都被扒光了!马斯克发全球最大开源模型!3140亿参数的Grok真打脸OpenAI了?与女主播发生关系被敲诈320万的住持,有新消息了!
logo
联系我们隐私协议©2024 bendi.news
Bendi新闻
Bendi.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Bendi.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。