ACM MM 2024深度多模态生成和检索研讨会,诚邀各界专家学者参与
简介
The 2nd International Workshop on Deep Multimodal Generation and Retrieval (MMGR) at ACM Multimedia 2024 focuses on the advancements in deep multimodal learning, emphasizing the integration of diverse data modalities such as text, images, audio, and video. This workshop aims to bring together researchers and practitioners to discuss original ideas, perspectives, and challenges in multimodal semantics understanding, generative models, multimodal information retrieval, and explainable and reliable multimodal learning.
信息生成(IG)和信息检索(IR)是两种主要的信息获取方式,即通过生成或检索来获取内容。虽然传统的IG和IR技术在语言处理领域取得了巨大成功,但在不同模态(如文本、图像、音频和视频)数据源的利用不足,可能会限制IG和IR技术的全面发展,从而影响其在现实世界中的应用。鉴于我们的世界充满了多媒体信息,本次研讨会鼓励在IG和IR研究中发展深度多模态学习。
多模态数据类型和技术,如DALL-E、Stable Diffusion、GPT-4和Sora,展示了在多模态IG和IR学习中的巨大潜力。然而,这些领域中仍存在许多未解决的挑战和开放性问题。通过本次研讨会,我们希望鼓励在深度多模态生成与检索领域的更多探索,为相关方向的研究人员提供一个分享见解和进展的平台,以推动这一快速发展的领域。
重要时间点
Paper Submission
July 19, 2024 (AoE)
Notification of Acceptance
August 5, 2024 (AoE)
Camera-ready Submission
August 19, 2024 (AoE) [Firm Deadline]
Workshop Dates
28 October - 1 November, 2024 (AoE)
论文主题
1. Multimodal Semantics Understanding:
Vision-Language Alignment Analysis
Multimodal Fusion and Embeddings
Large-scale Vision-Language Pre-training
Structured Vision-Language Learning
Commonsense-aware Vision-Language Learning
Visually Grounded Language Parsing
2. Generative Models for Image/Video Synthesis:
Text-free/conditioned Image Synthesis
Temporal Coherence in Video Generation
Image/Video Editing and Inpainting
Visual Style Transfer
Multimodal Dialogue Response Generation
3. Multimodal Information Retrieval:
Image/Video-Text Compositional Retrieval
Image/Video Moment Retrieval
Image/Video Captioning
Multimodal Retrieval with MLLMs
4. Explainable and Reliable Multimodal Learning:
Explainable Multimodal Retrieval
Adversarial Attack and Defense
Multimodal Learning for Social Good
Efficient Learning of MLLMs
提交类型
1. Position or Perspective Papers: Original ideas, perspectives, research visions, and open challenges in the workshop topics. (4 pages + 1-page reference or 8 pages + 2-page reference)
2. Featured Papers: Already published papers or papers summarizing existing publications relevant to the workshop topics.
3. Demonstration Papers: Original or already published prototypes and operational evaluation approaches. (Up to 2 pages + unlimited references)
提交方式
Submissions should be written in English and formatted according to the current ACM two-column conference format. Authors must anonymize their submissions. Suitable LaTeX, Word, and Overleaf templates are available on the ACM website. Submissions can be made through OpenReview.
审稿过程
All submissions will be peer-reviewed by at least two experts in the field. The review process will be two-way anonymized. Accepted papers will be published in the ACM Digital Library, and high-quality papers can be recommended to a special issue in ACM ToMM.
组织者团队
Wei Ji: National University of Singapore
Hao Fei: National University of Singapore
Yinwei Wei: Monash University
Zhedong Zheng: University of Macau
Juncheng Li: National University of Singapore
Long Chen: The Hong Kong University of Science and Technology
Lizi Liao: Singapore Management University
Yueting Zhuang: Zhejiang University
Roger Zimmermann: National University of Singapore
For more details, visit the MMGR24 Workshop page.
https://videorelation.nextcenter.org/MMGR24/
#投 稿 通 道#
让你的文字被更多人看到
如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。
总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。
PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析、科研心得或竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。
📝 稿件基本要求:
• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注
• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题
• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算
📬 投稿通道:
• 投稿邮箱:[email protected]
• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者
• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿
△长按添加PaperWeekly小编
🔍
现在,在「知乎」也能找到我们了
进入知乎首页搜索「PaperWeekly」
点击「关注」订阅我们的专栏吧
微信扫码关注该文公众号作者