Bendi新闻
>
IJCAI 2024 | 多智能体强化学习新范式:个性化训练与蒸馏执行

IJCAI 2024 | 多智能体强化学习新范式:个性化训练与蒸馏执行

6月前

©作者 | 陈逸群

单位 | 中国人民大学

研究方向 | 信息检索、LLM、强化学习


大家好,这里和大家分享一篇我们在多智能体强化学习(MARL)领域关于新的训练范式的文章(Accepted by IJCAI 2024)。

论文标题:
PTDE: Personalized Training with Distilled Execution for Multi-Agent Reinforcement Learning

论文链接:

https://arxiv.org/pdf/2210.08872

代码链接:

https://github.com/AntNLP/nope_head_scale

这篇文章展示了如何通过个性化的集中式训练得到一个强大的集中式执行算法,然后通过知识蒸馏的方式使得智能体决策既受益于全局信息同时又能实现分散式执行,从而提升多智能体系统的协作性能。


研究背景与挑战

在现实世界的许多任务中,如多机器人导航、避障、无人机路径规划等,都可以建模为多智能体系统的决策问题。这些场景通常受到局部可观测和分散式执行的约束。

最常见的范式是集中式训练分散式执行(Centralized Training with Decentralized Execution, CTDE),这种范式在训练时利用全局信息促进各个智能体实现协作行为,在执行时只使用局部信息,是观测信息受限情况下的一种很好的训练 & 执行范式。

但如何在满足 CTDE 范式的前提下,还能在分散式决策过程中充分受益于全局信息,进而提升多智能体的协作表现呢?本文提出了一种新颖的范式(Personalized Training with Distilled Execution, PTDE)来实现这一目标。


PTDE的核心思想

PTDE 范式符合 CTDE 的要求,但与传统 CTDE 不同的是 PTDE 强调为每个智能体提供个性化的全局信息,并通过知识蒸馏将这些个性化的全局信息通过智能体的局部信息预测得到。这种方法不仅大大提升了智能体集中式执行的性能,而且转变为分散式执行时的性能下降也是在可接受范围内的。


研究方法

PTDE 包含两个训练阶段。

第一阶段,通过全局信息个性化(GIP)模块为每个智能体提供个性化的全局信息 。(Figure 2)

▲ 全局信息个性化(GIP)模块
第二阶段,使用知识蒸馏技术,将个性化的全局信息 蒸馏到仅依赖于智能体局部信息的学生网络中,即学生网络根据局部信息生成个性化全局信息的替代品 。(Figure 4)

▲ 特定化的知识蒸馏

经过两阶段的训练后,在执行阶段用 替代 ,就可以实现完全分散式的执行并且受益于特定化的全局信息。

▲ 两阶段训练&分散式执行


实验结果

我们在 StarCraft II、Google Research Football 和搜索排序(LTR)等不同的测试平台上进行了广泛的实验。

实验结果表明:

  • unified 的全局信息对多智能体的协作不一定起到积极作用。
  • 个性化的全局信息相比于 unified 的全局信息来说,一般更有利于多智能体的协作。
  • 知识蒸馏后,由集中式执行转变为分散式执行的性能下降是在可接受范围内的。
  • 基于 PTDE 范式的算法可以在不同类型的环境 & 任务中取得不错的性能。
  • PTDE 范式可以很好地适配现有的 MARL 算法,如基于值分解的 QMIXVDN,以及基于 Actor-Critic 架构的 MAPPO 等。


以下是本文实验部分的一些基本数据,分别是在 StarCraft II、Google Research Football 和搜索排序(LTR)多个任务上的结果:

▲ 星际争霸实验结果

▲ 谷歌足球实验结果

▲ 搜索排序实验结果

文章的实验部分展示了更多充分且详细的实验曲线&结果分析,具体可进一步参考原文(http://arxiv.org/pdf/2210.08872)。


结论与展望

PTDE 作为一种新的多智能体强化学习范式,通过个性化的全局信息和知识蒸馏技术,有效地提升了多智能体系统的协作决策能力。

以上就是对 PTDE: Personalized Training with Distilled Execution for Multi-Agent Reinforcement Learning(http://arxiv.org/pdf/2210.08872)这篇文章的分享,如果感兴趣的话推荐阅读原文(http://arxiv.org/pdf/2210.08872)。如果想要讨论任何问题或者有任何建议,欢迎交流!

此外,还要宣传一下我们将 MARL 应用于搜索结果多样性排序(Search Result Diversification, SRD)的文章,探索 MARL 在更多场景应用的可能性:

MA4DIV: Multi-Agent Reinforcement Learning for Search Result Diversification(https://arxiv.org/pdf/2403.17421.pdf)



更多阅读



#投 稿 通 道#

 让你的文字被更多人看到 



如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。


总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 


PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。


📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算


📬 投稿通道:

• 投稿邮箱:[email protected] 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿


△长按添加PaperWeekly小编



🔍


现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧


·
·
·


微信扫码关注该文公众号作者

来源:PaperWeekly

相关新闻

可执行单元校验:在 IDE 中提升 AI 智能体代码的准确性ISSTA 2024 | 北大提出CoderUJB,面向代码大模型的可执行多任务代码评估基准揭示真实能力与局限"抢钱"!加航执行新规:华人回国或多花一笔钱!网友骂疯了!对301条款调查所采取行动的四年期审查的执行摘要:中国与技术转让、知识产权和创新相关的行为、政策和做法美国移民局执行新费率:职业应聘类申请费用常见问答「“定心丸农民安心计划”2022~2024年执行成果展示:陕西」中澳航线再砍!11月起执行:澳洲官宣移民新规,华人彻底输了!禽兽!将亲生子女「从15楼扔下」父亲与情人「执行死刑」外网:中国干得漂亮!美国快学学!重磅!澳政府突发大批PR,直接打电话邀请!华人激动刷屏!坏消息:签证再收紧,明天留学生签证新规执行...30多城掀起住房“以旧换新”,执行层面存多重痛点堵点Ansible 你快点:Ansible 执行过程分析、异步、效率优化Ansible你快点:Ansible执行过程分析、异步、效率优化将亲生儿女从15楼扔下 禽兽父亲与情人同被执行死刑 外网炸了:中国干得漂亮 美国快学学将亲生儿女从15楼扔下 禽兽父亲与情人同被执行死刑 外网炸了:中国干得漂亮刚刚!加航官宣执行新规!华人回国恐被迫多花一笔钱!网友怒批:简直是抢劫!2024年4月11-14日广州黄启团导师NLP专业执行师:一套「实用人性手册」,揭开自我改变的惊人秘密(二阶,可插班)内地香港司法协助新进展:九成民商事案件判决有望相互认可和执行突发:西雅图涂鸦者告警察赢了,获赔68万美元;华州新法允许家长对孩子变性有知情权,不过执行又遇新问题;不可错过的西北风味美食节!2024年8月6~11日广州青少年版NLP执行师课程:让孩子用NLP工具,把梦想照进现实为什么专家建议不开心就多唱歌?研究表明:接触音乐方式可以改善工作记忆和执行力!特别是能会改善中晚年的大脑健康今日arXiv最热NLP大模型论文:像人一样浏览网页执行任务,腾讯AI lab发布多模态端到端AgentIJCAI 2024 CV方向论文录用率仅有8.4%!投稿数量创新高!中餐将在悉尼成为历史,再也做不了!政府要执行新禁令,华人区直接受影响,大批华人怒了!IJCAI 2024 | 第九届“信也科技杯”全球AI算法大赛正式开赛!聚焦AI尖端赛题,31万奖金池等你挑战!
logo
联系我们隐私协议©2024 bendi.news
Bendi新闻
Bendi.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Bendi.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。