Bendi新闻
>
Transformer+时间序列登上Nature子刊!

Transformer+时间序列登上Nature子刊!

8月前

时空预测引领了新的热点,时间序列预测领域的首个大模型 TimeGPT 引起业界热议,Transformer+时序,扩散模型+时序更是顶会新方向大热“种子”选手,时序+多方向正在成为这个AI界瞩目的黑马!


本文整理了时间序列的时序预测 / 时序-Transformer / 时序-大模型 / 时序-扩散四大方向的最新论文204篇。


扫码回复“时序”领204篇论文合集



时间序列预测论文



ICLR2024 

ClimODE: Climate Forecasting With Physics-informed Neural ODEs


AAL2024

MSGNet: Learning Multi-Scale Inter-Serjes Correlations for Multivariate Time Series Forecasting


NeurIPS2023

Frequency-domain MLPs are More Effective Lea深度之眼整理rners in Time Series Forecasting


ICML 2023

Learning Deep Time-index Models for Time S深度之眼整理eries Forecasting 


KDD 2023

TSMixer: Lightweight MLP-Mixer Model fo深度之眼整理r Multivariate Time Series Forecasting 


因篇幅有限 仅展示前5篇


扫码回复“时序”领204篇论文合集




时间序列+transformer必读论文


1.iTransformer: InvertedTransformers Are Effective for Time Series Forecastina


2.Pathformer: Multi- Scale Transformers  With Adaptive Pathways For Time Series Forecasting


3.SCALEFORMER: ITERATIVE MULTI-SCALE REFINING TRANSFORMERS FOR TIME

SERIESFORECASTING


4.InParformer: Evolutionary Decomposition Transformers with Interactive Parallel Attentionfor LongTerm Time Series Forecasting


5.ContiFormer: Continuous-Time Tansformer for Irreqular Time Series Modeling


因篇幅有限 仅展示前5篇

扫码回复“时序”领204篇论文合集




深度学习+时间序列预测必读论文



卷积神经网络方法(4种算法模型)


1.CNN

Recent advances in convolutional neural networks


2.WaveNet-CNN

Conditional time series forecasting with convolutional neural networks


3.Kmeans-CNN

Short-term load forecasting in smart grid: a combined CNN and K-means clustering approach


4.TCN

An empirical evaluation of generic convolutional and recurrent networks for sequence modeling

因篇幅有限 仅展示前4篇


循环神经网络方法(3种算法模型)


1.RNN

Bidirectional recurrent neural networks


2.LSTM(长短期记忆网络)

Long short-term memory


3.GRU(门控循环单元)

Learning phrase representations using RNN encoder- decoder for statistical machine translation


Transformer方法(11种算法模型)


1.Transformer

Attention-based models for speech recognition


2.BERT

BERT: pre-training of deep bidirectional transformers for language understanding


3.AST

Adversarial sparse transformer for time series forecasting


4.Informer

Informer: beyond efficient transformer for long sequence time-series forecasting


因篇幅有限 仅展示部分


扫码回复“时序”领204篇论文合集




时间序列新突破:大模型+时间序列


大模型处时间序列


1.基于Promtpt的方法

Leveraging Language Foundation Models for HumanMobility Forecasting


2.将时间序列进行离散化处理

AudioLM: a Language Modeling Approach to Audio Generation


3.时间序列-文本对齐代表论文

Open Vocabulary Electroencephalography-To-Text Decoding and Zero-shot Sentiment Classification


4.引入视觉信息

Leveraging Vision-Language Models for Granul深度之眼整理tar Market Change Prediction


5.大模型工具

Unleashing the Power of  Shared Label Structures for Human Activity Recognition


训练时间序列领域大模型

TimetGPT-1


扫码回复“时序”领204篇论文合集



针对目前的大热时序,我们请来了顶会审稿人chichi老师解读时空/时序预测研究现状与近期热点。


课程大纲:


- 以GNN为主的时空预测模型 

  • 经典GNN时空预测算法(如STGCN, GraphWaveNet) 

  • 近两年GNN时空预测算法 

  • 近期GNN时空预测算法研究热点


- 以Transformer为主的时序预测模型 

  • 经典Transformer时序预测算法(如Autoformer,Fedformer)

  • 近两年Transformer时序预测算法 

  • 近期Transformer时序预测算法研究热点


- LLM在时空/时序预测上的应用

  • 微调LLM做时空时序预测

  • 语言增强的时序/时空预测模型

  • LLM做时序预测的未来挑战与研究方向


- 针对时序新热点和应用总结


扫码解锁

时序最新热点解读直播课


另外,我们准备了32节时间序列系列课程基础上课程分为五个模块。


  • 模块一基础认识数据科学家

  • 模块二进阶时间序列预测概论+论文和代码讲解

  • 模块三项目实战基于股价和零售的时序项目实战

  • 模块四比赛实战数据科学入门赛+回答准确性预测赛

  • 模块五时序前沿前沿机器学习与时序+时序分析任务与最新应用场景


0.01元解锁《时间序列系列课》

32节课+37h+部分课件+部分课堂作业及代码




一、时序课程介绍


01- 认识数据科学家

了解数据科学家的概念,岗位分布、职责、技能、薪资、职业发展路线等  

—课程时长:1小时



02-时间序列预测基础

1:时间序列预测入门

2:时间序列预测代码实践

3:Forecasting at Scale论文讲解+代码讲解

—课程时长:6小时


03-时序项目实战

1:夯实算法基础、熟悉算法原理,通过代码实操解决问题

2:系统掌握时序分析方法以及预测方法

—课程时长:8小时



04-两场时序比赛实战

1:数据科学入门赛

2:回答准确性预测赛


—课程时长:20小时


05-时序前沿项目

前沿机器学习与时序

时序分析任务与最新应用场景

—课程时长:2小时



这次更新的时序课程时长37小时,总共32节0.01元即可解锁。

0.01元解锁《时间序列系列课》

32节课+37h+部分课件+部分课堂作业及代码


微信扫码关注该文公众号作者

来源:PaperWeekly

相关新闻

Transformer登上Nature子刊!Transformer成最大赢家!登上Nature子刊高效涨点!用Transformer模型发Nature子刊(文末送书)突破!AI机器人拥有嗅觉!仿生嗅觉芯片研究登上Nature子刊重磅!相隔1万公里,两个“异地”实验室成功合作,登上Nature子刊首个像人类一样思考的网络!Nature子刊:AI模拟人类感知决策刚刚!JNK信号通路再发Nature子刊!IF=14.7分!清华系细胞大模型登Nature子刊!能对人类2万基因同时建模,代码已开源要在饮食中限制这种氨基酸!Nature子刊:这一“必需氨基酸”吃太多,恐加速肿瘤生长,抑制抗癌疗效!这种饮食模式,能延寿8+年!Nature子刊:超46万人数据揭示“长寿的秘诀”,但有一点要注意......秦始皇都没能找到长寿的方法,如今找到了!Nature子刊刊登最新研究发现限制饮食减缓大脑衰老并延长寿命的原因AI并没有学习!Nature子刊最新研究解码人工智能黑盒郑强教授,卸任后首篇Nature子刊!别再抗拒亲亲抱抱举高高!最新Nature子刊研究:触摸干预可以给所有年龄段的人带来健康益处,包括减轻疼痛、抑郁和焦虑等你常做的12件小事,正悄悄偷走你的视力;牛磺酸接连登上三大顶刊!Nature新论文揭示牛磺酸抗肥胖的分子机制|本周论文推荐脑电合成自然语音!LeCun转发Nature子刊新成果,代码开源多功能RNA分析,百度团队基于Transformer的RNA语言模型登Nature子刊Nature子刊 | 揭秘腰痛的元凶!衰老样巨噬细胞通过分泌IL-10介导雄性小鼠终板硬化血管生成准确率达60.8%,浙大基于Transformer的化学逆合成预测模型,登Nature子刊人机融合即将成真!纳米机器人杀死癌细胞,肿瘤生长抑制70%|Nature子刊Nature子刊:睡眠不会促进大脑“排毒”,甚至会降低清除废物的能力!「懂物理」是具身智能核心!北大高逼真物理仿真,加持磁性微米级机器人登Nature子刊LeCun转发,AI让失语者重新说话!纽约大学发布全新「神经-语音」解码器|Nature子刊Nature子刊:人工智能,追踪难辨的转移性癌症的原发灶显神通!
logo
联系我们隐私协议©2025 bendi.news
Bendi新闻
Bendi.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Bendi.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。