Bendi新闻
>
第十届 Angewandte Advances 前沿交叉论坛重磅来袭!

第十届 Angewandte Advances 前沿交叉论坛重磅来袭!

9月前

# 设为星标 走进我们 #

近年来,Angewandte Chemie 及其所有者—德国化学学会(GDCh)主办的Angewandte Symposia 系列研讨会在全球范围内取得了巨大的成功。Angewandte Symposia 邀请世界顶尖的化学家作为主讲人,为 Angewandte Chemie 的作者与读者们带来精彩的主题演讲。然而 Angewandte Symposia 举办频率较低。为了给 Angewandte Chemie 与化学研究者社群,尤其是年轻科研工作者们提供更多面对面交流的机会以及更好的支持不同事业阶段的化学研究者,Angewandte Chemie 将于今年起组织一系列 Angewandte Advances 研讨会。 

Angewandte Advances 系列研讨会将作为大型化学学术会议的特别分会场,举行为期半天至一天的学术报告与讨论活动。每期 Angewandte Advances 将邀请来自不同领域、处于不同事业阶段的6-8位优秀学者做学术报告,并由Angewandte Chemie 的编辑主持以及组织讨论。 

首届Angewandte Advances研讨会亮相于2022年8月在郑州举行的中国化学会第九届全国配位化学会议。

第二届Angewandte Advances研讨会于2023年3月16日作为中国化学会第十六届固态化学与无机合成学术会议的特别分会场,在北京国际会议中心举行。

第三届Angewandte Advances研讨会于2023年4月16日作为“大连催化+国际峰会”的期刊特别分会场,在大连国际会议中心圆满举行。

第四届Angewandte Advances研讨会于2023年6月9日作为“中国化学会第十二届有机固体电子过程暨华人有机光电功能材料学术讨论会”的分会场,在长春国际会展中心圆满举行。

第五届Angewandte Advances研讨会于2023年8月16日作为“中国化学会全国第二十一届大环化学暨第十三届超分子化学学术讨论会 ”的分会场,在天津圆满举行。

第六届 Angewandte Advances 研讨会于2023年8月20日作为“中国化学会第十一届全国无机化学学术会议”的分会场,在兰州圆满举行。

第七届Angewandte Advances研讨会在2023年9月10日作为“杭州化材+国际峰会“的分会场,在杭州圆满举行。

第八届Angewandte Advances研讨会在2023年11月24日作为“苏州纳米+国际峰会“的分会场,在苏州圆满举行。

第九届Angewandte Advances研讨会在2024年3月23日作为“2024武汉分析+国际峰会“的分会场,在武汉圆满举行。

第十届Angewandte Advances研讨会将于2024年4月20日作为“2024第二届催化+国际峰会“的特别分会场在大连举办。

本期 Angewandte Advances 邀请到六位主讲人,分别是范青华研究员(中国科学院化学研究所),曹睿教授(陕西师范大学),方伟慧研究员(中国科学院福建物质结构研究所),余家国教授(中国地质大学),李纲教授(上海交通大学)和王欢研究员(南开大学)。敬请期待!

会议时间及地点

2024年4月20日,13:30 - 17:30

大连国际会议中心 • 会议室 F303

会议日程

主讲人及报告简介



范青华 研究员

中国科学院化学研究所

向上滑动阅览

范青华:现任中国科学院化学研究所研究员、博士生导师。1989年毕业于湘潭大学化学系,1992年在中国科学院化学研究所获得硕士学位,1998在香港理工大学获得博士学位。1998年任中国科学院化学研究所副研究和课题组长、2003年任研究员。主要从事不对称催化、超分子催化、有机功能分子的设计合成及组装等研究工作。已发表SCI论文200余篇、合编/著学术专著4本,部分成果作为第二完成人获2005年国家自然科学二等奖。中国化学会会士,现任中国化学会第三十一届理事会副理事长和秘书长。

报告题目:

Asymmetric Hydrogenation of (Hetero)aromatic Compounds

向上滑动阅览

Asymmetric catalytic hydrogenation of easily available aromatic and heteroaromatic compounds is a straightforward and atom-economical way to obtain a wide range of chiral cyclic hydrocarbons and heterocyclic compounds.[1] However, unlike asymmetric hydrogenation of simple olefins, ketones and ketoimines, aromatic compounds have high chemical stability and require simultaneous reduction of multiple double bonds, making their asymmetric hydrogenation a great challenge. Over the past two decades, with the development of new catalytic systems and/or catalytic strategies, efficient asymmetric hydrogenation of many types of heteroaromatics has been achieved.[2,3] In recent years, we developed a new counteranion-assisted asymmetric catalytic hydrogenation system, and realized enantioselective hydrogenation of a series of nitrogen-containing heteroaromatic compounds, and cyclic and acyclic imines with unprecedented activity and excellent diastereo- and enantioselectivity.[3] Most recently, with the use of strategies of the alkali promoted enol-ketone tautomerization or heterogeneous-homogeneous catalyst relay catalysis, we have successfully realized the highly chemoselective and enantioselective asymmetric (transfer) hydrogenation of phenanthrols, naphthol and phenol derivatives for the first time,[4,5] which provides a new way to prepare enantiomerically pure cyclic alcohols from simple raw materials. 



Keywords: Asymmetric hydrogenation; Heteroaromatics; Arenols; Chiral heterocycles; Ru-diamine complexes 


References: 

[1] Wiesenfeldt, M. P.; Nairoukh, Z.; Dalton, T.; Glorius, F. Angew. Chem. Int. Ed. 2019, 58, 10460. 

[2] Wang, D.-S.; Chen, Q.-A.; Lu, S.-M.; Zhou, Y.-G. Chem. Rev. 2012, 112, 2557. 

[3] He, Y. M.; Song, F. T.; Fan, Q.-H. Top. Curr. Chem. 2013, 343, 145. 

[4] Zhang, S.-X.; Feng, Y.; Fan, Q.-H. et al. Angew. Chem. Int. Ed. 2022, 61, e202205739. 

[5] Li, X.; Hao, W.; Yi, N.; He, Y.-M.; Fan, Q.-H. CCS Chem. 2023, 5, 2277. 




曹睿  教授

陕西师范大学

向上滑动阅览

曹睿,陕西师范大学教授,博士生导师,国家杰出青年科学基金获得者,应用表面与胶体化学教育部重点实验室副主任。北京大学学士(2003),美国埃默里大学博士(2008),埃默里大学(2008-2009)和麻省理工学院(2009-2011)博士后。2011 年加入中国人民大学,2014 年调入陕西师范大学。曹睿教授的研究领域是分子电催化,通过发展新型金属卟啉/咔咯配合物分子催化体系,开展水氧化析氧、水还原析氢、和氧气还原等能源分子催化转化基础研究。主要研究方向包括:(1)分子催化反应机理研究;(2)分子催化剂构效关系研究;(3)分子催化剂多相化研究。以通讯作者在 Angew. Chem. Int. Ed. (21 篇), J. Am. Chem. Soc. (2 篇), Chem. Sci. (5 篇), ACS Catal. (5 篇) 等期刊发表论文 160 余篇;受邀撰写 Acc. Chem. Res. (1 篇) 评述文章,撰写 Chem. Rev. (2 篇) 和 Chem. Soc. Rev. (2 篇) 等综述文章;担任 Chemistry Europe Award 评奖委员会委员;担任 ChemSusChem 编委会主席,Chem. Soc. Rev. 编委和客座编辑,Chinese J. Catal. 青年编委和客座编辑,Chinese Chem. Lett., J. Electrochem. 和 ChemPhysChem 等期刊编委。 

报告题目:

Small Molecule Activation with Metal Porphyrins

向上滑动阅览

Developing highly efficient catalysts for small molecule activation reactions, including the hydrogen evolution reaction, oxygen evolution and oxygen reduction reactions, has attracted increasing attention in the past decades. Dr. Rui Cao focuses on illustrating the reaction mechanisms of these small molecule activation reactions and also on developing novel porphyrin-based molecular catalysts for these reactions. By demonstrating several H-H and O-O bond formation/cleavage processes, revealing the crucial effects of the electronic structure and proton transfer on these bond formation/cleavage processes, and by establishing structure-function relationships at the molecular level, in the past five years, Dr. Rui Cao has obtained significant achievements in hydrogen and oxygen evolution and oxygen reduction reactions, including: (1) demonstrated three different H-H bond formation mechanisms for the hydrogen evolution reaction (HER); developed highly efficient porphyrin-based molecular catalysts with the state-of-the-art performance for HER; (2) disclosed two O-O bond formation mechanisms for the oxygen evolution reaction (OER); rationally designed and developed highly efficient porphyrin-based molecular catalysts for OER; and (3) controlled and improved the O-O bond cleavage for the oxygen reduction reaction (ORR); developed porphyrin-based molecular ORR electrocatalysts with promising applications in new energy conversion and storage devices. 

Keywords: Molecular electrocatalysis; Metal porphyrin; Hydrogen evolution reaction; Oxygen evolution reaction; Oxygen reduction reaction 



References: 

[1] Li, X.; Lei, H.; Xie, L.; Wang, N.; Zhang, W.; Cao, R. Acc. Chem. Res. 2022, 55, 878-892. 

[2] Zhang, W.; Lai, W.; Cao, R. Chem. Rev. 2017, 117, 3717-3797. 

[3] Zhang, X.-P.; Chandra, A.; Lee, Y.-M.; Cao, R.; Ray, K.; Nam, W. Chem. Soc. Rev. 2021, 50, 4804-4811. 

[4] Liang, Z.; Wang, H.-Y.; Zheng, H.; Zhang, W.; Cao, R. Chem. Soc. Rev. 2021, 50, 2540-2581. 





方伟慧  研究员

中国科学院福建物质结构研究所

向上滑动阅览

方伟慧,博士、研究员、博士生导师。致力于新型团簇合成化学,在“稀土氧簇”、“钛氧簇”研究基础上,开辟“铝氧簇”体系,研究工作发表在J. Am. Chem. Soc.、Angew. Chem. Int. Ed.、Acc. Chem. Rev.等期刊,目前担任Polyoxometalates和Chinese Chemical Letters青年编委。 

报告题目:

铝氧簇合成化学及催化研究 

Synthesis of Aluminium Oxide Clusters and Their Catalysis Studies

向上滑动阅览

团簇是认识和研究固体表面结构的分子模型,有别于广泛研究的纳米材料和生物大分子,可兼具纳米材料和分子材料的特性,是无机合成化学中的重要领域之一。目前,团簇的研究主要研究集中在贵金属、过渡金属、稀土元素和碳团簇,而主族元素的研究相对匮乏。主族元素铝,是地壳中含量最丰富的金属元素,其氧化物普遍存在于天然矿物中,在工业上应用广泛。然而,长期以来,铝离子易水解的特性极大限制了其团簇聚集态等中间态物质精确结构信息的获取,严重影响了该领域相关研究的发展[1-2]。借鉴前期在稀土氧簇合成的配体诱导聚集策略,以及钛氧簇溶剂热合成体系,报告人以廉价的异丙醇为铝源,苯甲酸为有机配体开展了溶剂热合成探索,探索凝练出“配体诱导和溶剂调控策略”应用于铝氧簇的合成,建立了铝氧簇新研究体系,在该策略指导下首次构筑了铝氧轮簇等新型结构类型[3]。铝的氧化物通常具有优良的热稳定性、较大的孔隙率以及高的机械强度,常用于催化剂载体,以实现活性组分的均匀分散。结合铝材料的以上优势以及晶态材料结构明确的特征,报告人通过“配体诱导和溶剂调控”的合成策略开发了多例以铝氧簇为载体、不饱和配位异金属位点为催化中心的团簇催化剂,并将其应用于Aldol反应,如利用溶剂效应以及不同强度的超分子作用开展了均相催化与非均相催化的研究,并分别实现了对β-羟基酮与α,β-不饱和酮的高效选择性诱导转化。此外,能在保证高效转化的前提下呈现清晰的缔合位点,为阐释反应机制提供必要的实验依据(图1)[4-5]。

 图 1  铝氧簇应用于催化反应. 


关键词: 团簇;铝氧簇;合成化学;催化 


参考文献: 

[1] Casey, W. H., Large aqueous aluminum hydroxide molecules. Chem. Rev. 2006, 106, 1. 

[2] Mensinger, Z. L.; Wang, W.; Keszler, D. A.; Johnson, D. W., Oligomeric group 13 hydroxide compounds-A rare but varied class of molecules. Chem. Soc. Rev. 2012, 41, 1019. 

[3] Geng, L.; Liu, C.-H.; Wang, S.-T.; Fang, W.-H.; Zhang, J. Angew. Chem. Int. Ed. 2020, 59, 16735.  

[4] Luo, D.; Xiao, H.; Zhang, M. Y.; Li, S. D.; He, L.; Lv, H.; Li, C. S.; Lin, Q. P.; Fang, W. H.; Zhang, J., Chem. Sci. 2023, 14, 5396. 

[5] Liu, Y. J.; Su, H. F.; Sun, Y. F.; Wang, S. T.; Zhang, C. Y.; Fang, W. H.; Zhang, J., Supracluster Assembly of Archimedean Cages with 72 Hydrogen Bonds for the Aldol Addition Reaction. Angew. Chem. Int. Ed. 2023, 62, e202309971. 



余家国  教授

中国地质大学

向上滑动阅览

Prof. Jiaguo Yu received his BS and MS in chemistry from Central China Normal University and Xi’an Jiaotong University, respectively; his PhD in Materials Science from Wuhan University of Technology (WUT). In 2000, he became a Professor at WUT. In 2021, he moved to China University of Geoscience (Wuhan). His research interests include semiconductor photocatalysis, photocatalytic hydrogen production, CO2 reduction and so on. He is Foreign Member of Academia Europaea (The Academy of Europe) (2020), Foreign Fellow of the European Academy of Sciences (2020) and Fellow of the Royal Society of Chemistry (2015).

报告题目:

Electron Transfer Mechanism of S-Scheme Photocatalyst 

向上滑动阅览

Recently, S-scheme (step-scheme) heterojunction photocatalyst has attracted increasing attention due to its enhancing the spatial separation of photogenerated charge carriers and maximizing the redox powers of carriers. S-scheme photocatalyst is composed of oxidation photocatalys (OP) and reduction photocatalyst (RP), which promotes the recombination of useless photogenerated charge carriers and preserves the useful ones for photocatalytic redox reactions. This presentation covers the state-of-the-art progress and new insights into electron transfer mechanism in S-scheme photocatalyst. It starts with the problems faced by single photocatalyst. Then, a viable solution for these problems is the construction of heterojunctions. To overcome the problems and mistakes of type-II and Z-scheme heterojunctions, S-scheme heterojunction is proposed in 2019 and its formation mechanism is discussed. Following this, direct characterization techniques including in situ irradiated X-ray photoelectron spectroscopy (ISI-XPS) and Femtosecond Transient Absorption Spectroscopy (fs-TAS) for verifying the electron transfer mechanism in S-Scheme photocatalyst are presented. Finally, different photocatalytic applications of S-scheme heterojunctions are summarized. 

Figure 1 Formation and electron transfer mechanism in S-Scheme photocatalyst: (a) before contact; (b) after contact; and (c) photogenerated charge carrier transfer under light irradiation. 


Keywords: S-scheme heterojunction; Photocatalyst; Electron transfer; XPS; fs-TAS. 

References: 

[1] J. Yu, L. Zhang, L. Wang, B. Zhu , Elsevier, 2023, ISBN 978-0-443-18786-5. 

[2] B. Zhu, J. Sun, Y. Zhao, L. Zhang, J. Yu, Adv. Mater., 2024, 36, 2310600. 

[3] J. Qiu, K. Meng, Y. Zhang, B. Cheng, J. Zhang, L. Wang, J. Yu, Adv. Mater., 2024, 36, 2400288. 

[4] B. He, P. Xiao, J. Yu, et al. Angew. Chem. Int. Ed., 2023, 62, e202313172. 

[5] C. Cheng, J. Zhang, B. Zhu, G. Liang, L. Zhang, J. Yu, Angew. Chem. Int. Ed., 2023, 62, e202218688. 

[6] F. Xu, K. Meng, B. Cheng, S. Wang, J. Xu, J. Yu, Nat. Commun., 2020, 11, 4613. 




李纲  教授

上海交通大学

向上滑动阅览

Gang Li is currently a Professor at Shanghai Jiao Tong University. He received his bachelor of science from the University of Science and Technology of China (USTC) in 2005. After one year of graduate study at the University of Minnesota–Twin Cities, he transferred with professor Richard P. Hsung to the University of Wisconsin–Madison, where he obtained his Ph.D. in 2009. Following one year of postdoctoral training at Emory University with Professor Albert Padwa, he moved to The Scripps Research Institute (TSRI) as a research associate with Professor Jin-Quan Yu in 2010. Afterwards, he was a professor at Fujian Institute of Research on the Structure of Matter from 2014 to 2021. Research in his group includes the utilization of carbon dioxide in organic synthesis and direct transformation of inert bonds. 

报告题目:

CO2 Utilization in Organic Synthesis via Rh-Catalyzed C–H Bond Activation and Photocatalysis

向上滑动阅览

Carbon dioxide (CO2) is regarded as the primary greenhouse gas, but it can also be considered as an ideal C1 feedstock for forging fine chemicals due to its properties of abundance, low cost, non-toxicity, and renewability. This oral report will focus on our recent contributions to CO2 utilization in organic synthesis via Rh-catalyzed C–H activation and visible-light photoredox catalysis. In Rh-catalyzed inert C–H activation reactions, CO2 is incorporated into arenes to build complex organic molecules with challenging site-selectivity and/or chemo-selectivity [1,2]. Furthermore, visible-light promoted reductive carboarylation of styrenes and non-activated arenes with CO2 will be discussed [3,4], where carbon dioxide radical anion (CO2•−) was discovered to be a potent reducing agent for challenging reductions in photocatalysis. Our most recent studies on the utilization of CO2•− for decarboxylation of alkenes and C(sp3)–H carboxylation will also be mentioned [5].  

Figure 1  CO2 utilization in organic synthesis via Rh-catalyzed C–H activation and photocatalysis. 


Keywords: CO2 utilization; C–H activation; Photocatalysis; Rh-catalysis; Carboxylation. 



References: 

[1] Fu, L.; Li, S.; Cai, Z.; Ding, Y.; Guo, X.-Q.; Zhou, L.-P.; Yuan, D.; Sun, Q.-F.; Li, G. Nat. Catal. 2018, 1, 469-478.  

[2] Gao, Y.; Cai, Z.; Li, S.; Li, G. Org. Lett. 2019, 21, 3663-3669. 

[3] Wang, H.; Gao, Y.; Zhou, C.; Li, G. J. Am. Chem. Soc. 2020, 142, 8122-8129. 

[4] Gao, Y.; Wang, H.; Chi, Z.; Yang, L.; Zhou, C.; Li, G. CCS Chem. 2022, 4, 1565-1576. 

[5] Zhang, F.; Wu, X.-Y.; Gao, P.-P.; Zhang, H.; Li, Z.; Ai, S.; Li, G. Chem. Sci. 2024, DOI: 10.1039/D3SC04431A. 

 




王欢  研究员

南开大学

向上滑动阅览

Dr. Huan Wang received her bachelor degree from College of Chemistry, Jilin University in 2010, and Ph.D. degree in physical chemistry with Prof. Zhongfan Liu and Prof. Hailin Peng from College of Chemistry and Molecular Engineering, Peking University in 2015. She worked as a postdoc research associate in Dartmouth College from 2016 to 2019. She started her independent academic career at College of Chemistry, Nankai University from Dec. 2019. Her research group mainly focuses on the two-dimensional materials for electrocatalysis.  

报告题目:

Two-Dimensional Materials for Electrocatalytic CO2 Reduction

向上滑动阅览

Electrochemical carbon dioxide reduction reaction (CO2RR) into valuable chemicals and fuels, powered by renewable energy sources, represents a sustainable route to offset the extra carbon emission. Developing highly active and selective catalysts is highly critical for the realization of CO2RR technology. The atom composition and arrangement of the catalyst surface/interface determines the electronic structure of active center, long-range structure and electric field, thus affecting the formation of intermediates and CO2RR performance. With the merits of high surface and simple composition, two-dimensional (2D) materials have been extensively studied as electrocatalysts and provide ideal platform to study the related reaction mechanism. This talk will present a series of regulation strategies on 2D materials for CO2RR, including: i) Establishing precursor-mediated growth strategy, which can precisely regulate the electronic structure of the active site by optimizing the molecular configuration and dimension of the precursor, thus allowing to demonstrate the structure-activity relationship from growth parameters - electronic structure – binding interaction - CO2 electroreduction performance. ii) Designing the surface atom arrangement and constructing the nanotip structures, which can induce an enhanced electric field on the catalyst interface, realizing selective CO2 reduction at significantly lowe overpotential. iii) Constructing proton/electron-rich interface, which can strengthen the CO2 reduction kinetics by accelerating the electron coupled proton transfer process, thus improving the generation rate of CO2RR products. Furthermore, integrating CO2RR at the cathode with the stripping of zinc (Zn) anode can construct a Zn-CO2 battery that enables the effective conversion of CO2 into CO while generating electricity. 



Keywords: Electrocatalysis, CO2 Electroreduction, Two-Dimensional Materials, Selectivity 



References: 

[1] S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, J. K. Nørskov, T. F. Jaramillo, I. Chorkendorff, Chem. Rev. 2019, 119, 7610. 

[2] H. Wang*, Y. Li, M. Wang, S. Chen, M. Yao, J. Chen, X. Liao, Y. Zhang, X. Lu, E. Matios, J. Luo, W. Zhang, Z. Feng, J. Dong, Y. Liu, and W. Li. PNAS, 2023, 120, e2219043120.  

[3] X. Liao, S. Chen, J. Chen, Y. Li, W. Wang, T. Lu, Z. Chen, L. Cao, Y. Wang, R. Huang, X. Sun, R. Lv, H. Wang*. PNAS, 2024, 121, e2317796121. 

[4] W. Wang, S. Chen, X. Liao, R. Huang, F. Wang, J. Chen, Y. Wang, F. Wang, H. Wang*. Nat. Commun. 2023, 14, 5443. 

[5] J. Li, K. Xu, F. Liu, Y. Li, Y. Hu, X. Chen, H. Wang*, W. Xu, Y. Ni, G. Ding, T. Zhao, M. Yu*, W. Xie, F. Cheng*. Adv. Mater. 2023, 35, 2301127. 

[6] S. Chen, J. Chen, Y. Li, S. Tan, X. Liao, T. Zhao, K. Zhang, E. Hu, F.Cheng, H. Wang*. Advanced Funct. Mater. 2023, 33, 2300801.  

[7] Y., J. Chen, S. Chen, X. Liao, T. Zhao, F. Cheng, H. Wang*. ACS Energy Lett. 2022, 7, 1454-1461. 



END



微信扫码关注该文公众号作者

来源:材料科讯

相关新闻

专业创造价值!「2024第十届全球母婴大会」重磅来袭研精极「智」,运筹千里 | 2024 XOps产业创新发展论坛重磅来袭!!【重磅日程公布】8大论坛,60+大咖加盟!2024(第八届)细胞外囊泡前沿与转化大会,4月18日北京盛大开幕!中国科学技术大学、西湖大学、香港大学、南京大学等知名学者重磅来袭!【Mimosa】随舞 | 路演重磅来袭!港人北上福利,重磅来袭!香港科技大学、中国人民大学、浙江大学、香港大学等知名学者重磅来袭!重磅来袭!港铁票价今年再飙升!吓到内地游客!报名开启|2024中国AIGC产业峰会定档4月17日,首批嘉宾重磅来袭![聚焦]本拿比全新溜冰场下月开放!还有这个项目重磅来袭!​太火了!悉尼《舞动经典》重磅来袭!北舞青年舞团全明星阵容!2024开年大戏!Vip票即将售罄!华人赶紧看!南京大学、中国科学院、哈尔滨工业大学、中国人民大学等知名学者重磅来袭!2024 Uoffer招募令重磅来袭!“金典双限定牛奶”重磅来袭!伊利巅峰盛典首日精彩回顾~【广而告之】德扑相见!2024 CUSSA 线上德扑娱乐锦标赛重磅来袭!武汉中心开业!重磅优惠来袭,5月26日神秘嘉宾与你相约!外资抢筹!利好来袭!国资委重磅发声!重磅!HBM定制化风暴来袭,结构性供需失衡更频繁?新加坡仲夏夜空重磅回归!一大波免费精彩活动来袭注意!7月新政即将生效,百万华人受影响!月底还有这一好消重磅来袭,网友点赞:绝了!重磅!2024年中澳青少年音乐节来袭!8月4日奏响悉尼歌剧院!乐响青春,韵起芳华!还有中国赛区选拔赛评委阵容等你来揭秘!重磅升级!2024加拿大城市求职群来袭,多伦多、温哥华…留学生都在加重磅来袭|2024西雅图喜剧节先导片上线!重磅来袭|喜剧节先导片上线!
logo
联系我们隐私协议©2025 bendi.news
Bendi新闻
Bendi.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Bendi.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。