Bendi新闻
>
AI炒股实战,Transformer杀疯了!

AI炒股实战,Transformer杀疯了!

6月前

时空预测引领了新的热点,时间序列预测领域的首个大模型 TimeGPT 引起业界热议,Transformer+时序,扩散模型+时序更是顶会新方向大热“种子”选手,时序+多方向正在成为这个AI界瞩目的黑马!

本文整理了时间序列的时序预测 / 时序-Transformer / 时序-大模型 / 时序-扩散四大方向的最新论文204篇。


扫码回复“时序”领论文新idea

预约25日晚20:00时序最新热点解读直播课



时间序列预测论文


ICLR2024 

ClimODE: Climate Forecasting With Physics-informed Neural ODEs


AAL2024

MSGNet: Learning Multi-Scale Inter-Serjes Correlations for Multivariate Time Series Forecasting


NeurIPS2023

Frequency-domain MLPs are More Effective Lea深度之眼整理rners in Time Series Forecasting


ICML 2023

Learning Deep Time-index Models for Time S深度之眼整理eries Forecasting 


KDD 2023

TSMixer: Lightweight MLP-Mixer Model fo深度之眼整理r Multivariate Time Series Forecasting 


因篇幅有限 仅展示前5篇


扫码回复“时序”领论文新idea

预约25日晚20:00时序最新热点解读直播课



时间序列+transformer必读论文


1.iTransformer: InvertedTransformers Are Effective for Time Series Forecastina


2.Pathformer: Multi- Scale Transformers  With Adaptive Pathways For Time Series Forecasting


3.SCALEFORMER: ITERATIVE MULTI-SCALE REFINING TRANSFORMERS FOR TIME

SERIESFORECASTING


4.InParformer: Evolutionary Decomposition Transformers with Interactive Parallel Attentionfor Long

Term Time Series Forecasting


5.ContiFormer: Continuous-Time Tansformer for Irreqular Time Series Modeling


因篇幅有限 仅展示前5篇

扫码回复“时序”领论文新idea

预约25日晚20:00时序最新热点解读直播课



深度学习+时间序列预测必读论文



卷积神经网络方法(4种算法模型)


1.CNN

Recent advances in convolutional neural networks


2.WaveNet-CNN

Conditional time series forecasting with convolutional neural networks


3.Kmeans-CNN

Short-term load forecasting in smart grid: a combined CNN and K-means clustering approach


4.TCN

An empirical evaluation of generic convolutional and recurrent networks for sequence modeling

因篇幅有限 仅展示前4篇


循环神经网络方法(3种算法模型)


1.RNN

Bidirectional recurrent neural networks


2.LSTM(长短期记忆网络)

Long short-term memory


3.GRU(门控循环单元)

Learning phrase representations using RNN encoder- decoder for statistical machine translation


Transformer方法(11种算法模型)


1.Transformer

Attention-based models for speech recognition


2.BERT

BERT: pre-training of deep bidirectional transformers for language understanding


3.AST

Adversarial sparse transformer for time series forecasting


4.Informer

Informer: beyond efficient transformer for long sequence time-series forecasting


因篇幅有限 仅展示部分


扫码回复“时序”领论文新idea

预约25日晚20:00时序最新热点解读直播课


时间序列新突破:大模型+时间序列


大模型处时间序列


1.基于Promtpt的方法

Leveraging Language Foundation Models for HumanMobility Forecasting


2.将时间序列进行离散化处理

AudioLM: a Language Modeling Approach to Audio Generation


3.时间序列-文本对齐代表论文

Open Vocabulary Electroencephalography-To-Text Decoding and Zero-shot Sentiment Classification


4.引入视觉信息

Leveraging Vision-Language Models for Granul深度之眼整理tar Market Change Prediction


5.大模型工具

Unleashing the Power of  Shared Label Structures for Human Activity Recognition


训练时间序列领域大模型

TimetGPT-1


扫码回复“时序”领论文新idea

预约25日晚20:00时序最新热点解读直播课


针对目前的大热时序,我们请来了顶会审稿人chichi老师在4月25日晚20:00点,解读时空/时序预测研究现状与近期热点。


本次直播大纲:


- 以GNN为主的时空预测模型 

  • 经典GNN时空预测算法(如STGCN, GraphWaveNet) 

  • 近两年GNN时空预测算法 

  • 近期GNN时空预测算法研究热点


- 以Transformer为主的时序预测模型 

  • 经典Transformer时序预测算法(如Autoformer,Fedformer)

  • 近两年Transformer时序预测算法 

  • 近期Transformer时序预测算法研究热点


- LLM在时空/时序预测上的应用

  • 微调LLM做时空时序预测

  • 语言增强的时序/时空预测模型

  • LLM做时序预测的未来挑战与研究方向


- 针对时序新热点和应用总结


扫码回复“时序”领论文新idea

预约25日晚20:00时序最新热点解读直播课


另外,我们准备了32节时间序列系列课程基础上课程分为五个模块。


  • 模块一基础认识数据科学家

  • 模块二进阶时间序列预测概论+论文和代码讲解

  • 模块三项目实战基于股价和零售的时序项目实战

  • 模块四比赛实战数据科学入门赛+回答准确性预测赛

  • 模块五时序前沿前沿机器学习与时序+时序分析任务与最新应用场景


0.01元解锁《时间序列系列课》

32节课+37h+部分课件+部分课堂作业及代码



一、时序课程介绍

01- 认识数据科学家

了解数据科学家的概念,岗位分布、职责、技能、薪资、职业发展路线等  

—课程时长:1小时



02-时间序列预测基础

1:时间序列预测入门

2:时间序列预测代码实践

3:Forecasting at Scale论文讲解+代码讲解

—课程时长:6小时


03-时序项目实战

1:夯实算法基础、熟悉算法原理,通过代码实操解决问题

2:系统掌握时序分析方法以及预测方法

—课程时长:8小时



04-两场时序比赛实战

1:数据科学入门赛

2:回答准确性预测赛


—课程时长:20小时


05-时序前沿项目

前沿机器学习与时序

时序分析任务与最新应用场景

—课程时长:2小时



这次更新的时序课程时长37小时,总共32节0.01元即可解锁。

0.01元解锁《时间序列系列课》

32节课+37h+部分课件+部分课堂作业及代码

微信扫码关注该文公众号作者

来源:Jack Cui

相关新闻

AI炒股实战,LSTM杀疯了!5W奖金到手该死,这糟糕的心动感,AI杀疯了!又一篇AI顶会!这个idea“ 杀疯了 ” ....Mamba再次击败Transformer!在视频理解任务中杀疯了!杀疯了!谷歌卷视频到语音,逼真音效让AI视频告别无声!谷歌这次又“杀疯了”!200万token长文本能力问鼎全球最强,一场大会,AI被提了120次稚晖君人形机器人全家桶发布:穿针拧螺丝搓麻将,机器娃没满月就干活,开源大招杀疯了!小米生态杀疯了!不愧“价格屠夫”,99元入OWS智控开放式耳机!巴黎奥运,这些品牌杀疯了!小米生态杀疯了!手酸、手麻、腱鞘炎,用它轻松搞定!速递|MiniMax 开发的 Talkie 杀疯了!月活破 1100 万,美国用户占比 50%,用户体量接近 C.ai 六成不止芯片股!AI牛市还有这三只潜力股新冠超强变种杀疯了!澳洲面临“寒冬”,疫苗逐渐失效!这一传染病患者暴增...小米生态杀疯了!“一根线”造【0压】轻跑鞋,媲美千元国外大牌一刀未剪,杀疯了!她一回归,吊打所有大片!杀疯了!中国汽车,正在占领澳洲!杀疯了!全面超越Llama3的强悍开源模型,仅9B,1000k上下文;GPT-4级别模型1年降价1万倍CVPR 2024满分论文出炉!这些方向杀疯了!2万提新车!价格战杀疯了!超63%品牌退出这个市场......这件免bra吊带杀疯了!终于可以光明正大不用穿内衣了!巨头杀疯了!阿里:降价97%!百度“王炸”:免费!创业公司怎么办?李开复表态热巴的印花衬衫穿搭杀疯了!让艺术抵达生活,优雅气质十足爆打多模态王者 GPT-4V、Gemini Pro!这个小小端侧模型杀疯了!CVPR 2024 满分论文出炉!这些方向杀疯了!
logo
联系我们隐私协议©2024 bendi.news
Bendi新闻
Bendi.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Bendi.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。