Bendi新闻
>
ICLR 2024 | AnomalyCLIP:零样本异常检测新范式

ICLR 2024 | AnomalyCLIP:零样本异常检测新范式

6月前

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【异常检测】微信交流群

添加微信:CVer5555,小助手会拉你进群!

扫描下方二维码,加入CVer学术星球可以获得最新顶会/顶刊上的论文ideaCV从入门到精通资料,及最前沿应用!发论文/搞科研/涨薪,强烈推荐!

转载自:机器之心

零样本异常检测(ZSAD)允许检测模型仅利用辅助数据进行训练,从而在没有任何目标数据集训练样本的情况下检测异常。这在因各种原因(如数据隐私问题)无法获取训练数据时非常关键。


然而,这项任务面临的挑战在于,模型需要能够跨不同领域泛化异常检测能力,尤其是前景对象、异常区域及背景特征(比如不同产品或器官上的缺陷或肿瘤)在不同应用中可能大相径庭。


为了改进 CLIP 模型,来自浙江大学、新加坡管理大学、哈佛大学的研究者联合提出 AnomalyCLIP,使其能在不同领域中更准确地进行零样本异常检测。AnomalyCLIP 的核心思想是学习一种与对象不相关的文本提示技术(object-agnostic learning),这种技术能够捕捉到图像中的一般性正常和异常特征,而不依赖于任何特定的前景对象,从而在多种语义的对象上实现泛化的异常识别。在 17 个来自不同领域(如缺陷检测和医疗成像)的真实世界异常检测数据集上进行的大规模实验证明, AnomalyCLIP 在跨域且高度多样化类别语义的数据中实现了卓越的零样本异常检测和分割能力。

  • 论文名称:AnomalyCLIP: Object-agnostic Prompt Learning for Zero-shot Anomaly Detection

  • 文章地址:https://arxiv.org/pdf/2310.18961.pdf

  • 代码地址:https://github.com/zqhang/AnomalyCLIP


背景

传统的异常检测方法通常需要在特定应用领域内有可用的训练样本来学习检测模型。然而,在某些情况下,这个假设可能并不成立,比如访问训练数据会违反数据隐私政策,或者目标领域内根本就没有可用的训练数据。


图 1: 不同文本提示方法的结果对比。


由于不同应用场景中异常的视觉外观、前景对象和背景特征存在很大差异,例如不同产品表面的缺陷、不同器官上的病变或肿瘤,或者是工业缺陷与医学图像中肿瘤 / 病变的对比,我们需要能够针对这些变化进行准确零样本异常检测(ZSAD)的检测模型,这要求模型具有强大的泛化能力。


最近,大型预训练的视觉 - 语言模型(VLMs)在包括异常检测在内的多种视觉任务上展示了出色的零样本识别能力。特别是,通过使用数以百万计的图像 - 文本对进行预训练,CLIP 在强化各种下游任务的泛化能力方面发挥了巨大作用。然而,CLIP 这类 VLM 主要是为了学习前景对象的类别语义,而不是图像中的异常 / 正常模式,因此它们在理解视觉异常 / 正常性方面的泛化能力有限,导致在 ZSAD 性能方面表现不佳。


此外,当前使用的文本提示方法,如图 1d 和图 1e 所示,无论是手动定义的文本提示还是可学习的文本提示,往往会导致提示文本嵌入偏向于全局特征以实现有效的对象语义对齐,而忽略了通常表现在细节、局部特征中的异常。

方法介绍

AnomalyCLIP 旨在通过学习对象不相关的文本提示来让 CLIP 实现不同领域中的准确 ZSAD,从而捕获图像中的通用正常性和异常性,如图 2 所示。AnomalyCLIP 首先为 “正常” 和 “异常” 这两个广泛的类别设计了一个简单而普遍有效的可学习的文本提示模板,然后通过使用辅助数据,结合图像级别和像素级别的损失函数来让提示嵌入学习图像中存在的通用正常和异常模式。


这样,AnomalyCLIP 可以专注于图像中的异常区域而非对象的语义,使其能够零样本的识别出与辅助数据中相似的异常模式。如图 1a 和图 1b 所示,尽管辅助数据和目标数据中前景对象的语义完全不同时,但是其异常模式保持相似,例如金属螺母和板材上的划痕、晶体管和 PCB 的错位、不同器官表面的肿瘤 / 病变等。而 CLIP 的文本提示嵌入在不同领域间的泛化能力有限,如图 1c 所示。不同的是,AnomalyCLIP 学习到的对象不相关的文本提示嵌入能够有效地泛化,识别出跨领域图像中的异常,如图 1f 所示。AnomalyCLIP只需要微调一次,就能够泛化地捕捉不同对象、场景甚至跨领域的异常。其他的没有了。


图 2: AnomalyCLIP 框架图

实验结果


该研究在 17 个公开可用的数据集上进行了大量实验,涵盖了各种工业检测场景和医学成像领域(包括摄影、内窥镜和放射学),以评估 AnomalyCLIP 的性能。在工业检测方面,该研究考虑了 MVTec AD、VisA、MPDD、BTAD、SDD、DAGM 和 DTD-Synthetic 等数据集。在医学成像方面,该研究考虑了皮肤癌检测数据集 ISIC、结肠息肉检测数据集 CVC-ClinicDB 和 CVC-ColonDB、Kvasir、Endo、甲状腺结节检测数据集 TN3k、脑瘤检测数据集 HeadCT、BrainMRI、Br35H 和 COVID-19 检测数据集 COVID-19。最先进的 baseline 包括 CLIP、CLIP-AC、WinCLIP、VAND 和 CoOp。论文附录提供了有关方法和数据预处理的更多细节。


表 1:工业领域零样本异常检测性能比较。最佳性能以红色突出显示,次佳性能以蓝色突出显示。†表示结果来自原始论文。(除了 MVTec AD 数据集以外,其他所有结果均由 MVTec AD fine-tuining 得到)


各种工业检测领域的零样本异常检测性能

表 1 展示了 AnomalyCLIP 与五种 baseline 在七个工业缺陷数据集上的零样本异常检测结果,这些数据集具有非常不同的前景对象、背景和 / 或异常类型。AnomalyCLIP 在这些数据集上取得了优越的零样本异常检测性能,大部分情况下明显优于其他五种方法。CLIP 和 CLIP-AC 表现较差的原因在于 CLIP 的原始预训练侧重于对齐对象语义而非异常语义。WinCLIP 和 VAND 通过使用手动定义的文本提示获得了更好的结果。另外,CoOp 采用了可学习的提示来学习全局异常语义。然而,这些提示专注于全局特征,忽略了细粒度的局部异常语义,导致它们在异常分割上表现不佳。为了将 CLIP 适应于零样本异常检测,AnomalyCLIP 学习了对象不相关的文本提示,通过全局和局部上下文优化,专注于学习通用的异常 / 正常模式,使得模型能够有效识别全局和局部的异常。得到的提示还可以推广到来自不同领域的不同数据集。为了提供更直观的结果,该研究在图 3 中可视化了 AnomalyCLIP、VAND 和 WinCLIP 在不同数据集上的异常分割结果。与 VAND 和 WinCLIP 相比,AnomalyCLIP 可以对来自不同工业检测领域的缺陷进行更准确的异常分割。


图 3: AnomalyCLIP 分割结果


表 2:医疗领域零样本异常检测性能比较。最佳性能以红色突出显示,次佳性能以蓝色突出显示。请注意,医疗异常检测数据集往往不同时包含像素级和图像级标签,因此评估图像级和像素级医疗异常检测的数据集有所不同。


从缺陷数据集到多样化的医学领域数据集的泛化能力


为了评估模型的泛化能力,该研究进一步考察了 AnomalyCLIP 在 10 个不同器官、不同成像设备上的医学图像数据集上的零样本异常检测性能。表 2 展示了相关结果,其中包括 AnomalyCLIP、VAND 和 CoOp 等基于学习的方法,均使用 MVTec AD 数据进行fine-tuining。


值得注意的是,像 AnomalyCLIP 和 VAND 这样的方法在各种医学图像数据集上取得了令人满意的零样本异常检测性能,即使它们是使用缺陷检测数据集进行调优的。在所有这些方法中,由于其通过对象不相关的提示学习带来的强大泛化能力,AnomalyCLIP 是表现最佳的。


正如图 3 所示,AnomalyCLIP 能够准确检测出不同医学图像中的各种异常类型,例如摄影图像中的皮肤癌区域,内窥镜图像中的结肠息肉,超声图像中的甲状腺结节以及 MRI 图像中的脑肿瘤,其在定位异常病变 / 肿瘤区域方面的性能明显优于另外两种方法 WinCLIP 和 VAND。这再次证明了 AnomalyCLIP 在医学成像领域高度多样化的对象语义数据集中具有领先的零样本异常检测性能。

何恺明在MIT授课的课件PPT下载

在CVer公众号后台回复:何恺明,即可下载本课程的所有566页课件PPT!赶紧学起来!

CVPR 2024 论文和代码下载

在CVer公众号后台回复:CVPR2024,即可下载CVPR 2024论文和代码开源的论文合集


异常检测和Mamba交流群成立

扫描下方二维码,或者添加微信:CVer5555,即可添加CVer小助手微信,便可申请加入CVer-异常检测或者Mamba微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF、3DGS、Mamba等。


一定要备注:研究方向+地点+学校/公司+昵称(如异常检测或者Mamba+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

▲扫码或加微信号: CVer5555,进交流群


CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集近万人!


扫码加入星球学习


▲点击上方卡片,关注CVer公众号

整理不易,请点赞和在看

微信扫码关注该文公众号作者

来源:CVer

相关新闻

ICLR 2024 | 跨领域准确进行零样本异常检测,浙大等提出AnomalyCLIPIJCAI 2024 | 多智能体强化学习新范式:个性化训练与蒸馏执行ECCV 2024 | 南洋理工三维数字人生成新范式:结构扩散模型戴康:印度股市创新高!重温:新范式,印度股市的“牛途”戴康:新范式,印度股市的“牛途”——“债务周期大局观”系列(八)智能纤毛粘附设计新范式:超越壁虎仿生设计的极限 | NSR量化大模型退化严重?ETH北航字节推出LoRA新范式 | ICML 2024新范式结题:缅北三大家族白所成等十人被押解回国华为查询建议新范式MMQS入选WWW 2024,解锁基于人类反馈的多模态查询建议戴康:一张图看懂《新范式,印度股市的“牛途”——“债务周期大局观”系列(八)》ICLR 2024 | 微软提出视觉新主干EfficientMod:融合卷积和注意力机制港大和字节提出Groma:多模态大模型新范式!模拟人类先感知后认知,精确定位图中物体!CVPR 2024 | 南洋理工提出动态人体渲染新范式,高度还原跳舞时飞扬的裙摆一秒侦破大模型“高分低能”:贾佳亚团队联手剑桥清华等共推评测新范式ICML 2024 | 量化大模型退化严重?ETH北航字节推出LoRA新范式ICML 2024 | 川大提出外部引导的深度聚类新范式,大幅提升CLIP图像聚类性能3D资产生成领域福音:自动化所、北邮团队联合打造材质生成新范式CVPR 2024 | 跳舞时飞扬的裙摆,AI也能高度还原了,南洋理工提出动态人体渲染新范式ICLR 2024 清华/新国大/澳门大学提出一模通吃的多粒度图文组合检索MUG:通过不确定性建模,两行代码完成部署ICLR 2024 | Adobe提出DMV3D:3D生成只需30秒!让文本、图像都动起来的新方法!ECCV 2024 | 提升GPT-4V、Gemini检测任务性能,你需要这种提示范式Pika联创参与新研究:Diffusion能抢GPT的活了!成功挑战自回归文本范式转发|开幕式嘉宾揭晓!2024哈佛中国教育论坛 “人文与科技:迎接教育新浪潮”【早鸟售票|开幕式嘉宾揭晓】2024哈佛中国教育论坛 “人文与科技:迎接教育新浪潮”
logo
联系我们隐私协议©2024 bendi.news
Bendi新闻
Bendi.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Bendi.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。