Bendi新闻
>
AAAI 2024 | 面向神经网络的全贝叶斯显著性检验方法

AAAI 2024 | 面向神经网络的全贝叶斯显著性检验方法

5月前


©PaperWeekly 原创 · 作者 | 刘泽华、李梓萌等
单位 | 北航BIGSCity实验室

显著性检验可以用于判断一个命题在给定观察数据下是否为真。然而,传统的显著性检验往往需要推导检验统计量的分布形式,难以处理复杂的非线性关系。在本文中,我们提出面向神经网络的全贝叶斯显著性检验方法,称为 nFBST (neural FBST),以克服传统检验方法对建模非线性关系的局限性,是首篇将深度神经网络引入显著性检验的工作。

我们采用贝叶斯神经网络来精确地拟合非线性和高维关系,进而通过计算贝叶斯证据作为检验度量。nFBST 不仅可以进行全局的检验,还可以进行局部和逐样本的检验,之前的检验方法只关注全局的检验。而且,nFBST 是一个通用的框架,可以选择不同的特征重要性度量进行扩展,比如 Grad-nFBST、LRP-nFBST、DeepLIFT-nFBST、LIME-nFBST。

我们在模拟数据集和真实数据集上均进行了实验验证了我们方法的优越性。


论文题目:
Full Bayesian Significance Testing for Neural Networks

论文作者:

刘泽华,李梓萌,王静远,何玥

通讯作者:

王静远教授

收录会议:

AAAI 2024

论文链接:

https://arxiv.org/abs/2401.13335

代码链接:

https://github.com/liuzh-buaa/nfbst


引言

显著性检验可以用于判断一个命题在给定观察数据下是否为真,在许多科学领域得到了非常广泛的应用,比如社会科学、医药研究。例如,评估新的治疗方法或药物的疗效:第一步,进行临床试验,将接受新疗法治疗的患者与对照组的反应进行比较;第二步,显著性检验作为分析工具确定接受新疗法治疗后效果的改善是否显著,这为新疗法的评估提供了证据。

显著性检验的前提是要恢复出数据背后蕴含的分布关系,也即确定真实的数据生成模型 ,然后基于 证明一个命题的正确性与否,对 的不同假设也自然而然地衍生出了不同的显著性检验方法。然而,对 的假设过于简单(比如线性关系)会使其不能很好地表示真实情况,而复杂的假设则又使推导检验统计量的理论分布形式变得非常困难。
近期,斯坦福大学团队提供了一种在非线性场景下进行显著性检验的解决方案,但它在计算检验统计量分布形式时仍面临困难(近似),而且只能解决有限的函数空间(实际应用时受限于单隐藏层神经网络)。
从另一方面考虑,现有的显著性检验方法只关注于对全局的检验,然而,一些全局成立/不成立的命题在局部仍可能不成立/成立(尤其在非线性假设下)。比如,临床试验表明一种药物对治疗癌症有效但却对某类人群不起作用。因此,显著性检验应该在总体分布和子群体分布分别验证命题的正确性。
为了更好地应对真实场景中复杂的数据类型,我们将深度神经网络引入显著性检验以建模非线性关系。我们从贝叶斯角度进行显著性检验以克服在复杂关系下计算检验统计量理论分布的困难,并提出了一种面向神经网络的全贝叶斯显著性检验方法,称为 nFBST (neural FBST)。
在给定检验统计量之后,nFBST 可以通过比较该命题及其相反命题的后验概率来检验一个命题的正确性。我们可以对总体分布进行检验,也可以对子群体分布进行检验,这取决于我们对检验统计量的不同定义。此外,nFBST 是一个通用框架,可以选择不同的特征重要性度量进行扩展,比如 Grad-nFBST、LRP-nFBST、DeepLIFT-nFBST、LIME-nFBST。

我们的主要贡献可以总结为以下几点:

  • 我们是首篇将深度神经网络引入显著性检验的工作,我们的方法通过贝叶斯的方式拟合检验统计量分布从而替代了复杂的理论推导,并且深度神经网络不需要对 的形式做特定假设。
  • 我们设计了面向神经网络进行全贝叶斯显著性检验的完整流程,它是一个通用的框架,可以选择不同的实现方式以及不同的特征重要性度量进行扩展,比如 Grad-nFBST、LRP-nFBST、DeepLIFT-nFBST、LIME-nFBST。
  • 我们提出的 nFBST 既可以解决全局的显著性检验问题,也可以解决之前方法所忽视的局部显著性检验,在非线性假设下,一个命题在全局和局部的表现可能并不一致。
  • 我们进行了丰富的实验验证我们方法的优越性。


理论方法

频率学派显著性检验方法

我们定义 总体分布蕴含的真实函数关系,假设数据生成过程为
其中 为随机噪声满足期望值为0,即
显著性检验首先要定义检验统计量 ,然后针对 提出两个对立的命题(假设),分别为零假设 和备择假设 。频率学派显著性检验方法通过计算 值来判断数据和零假设是否一致,具体步骤如下:
1. 首先对数据的整体分布 作出假设,并将其参数记作 ,即 ;然后基于该假设推导检验统计量 的理论分布形式。
2. 给定观察数据 ,并通过拟合数据优化得到参数最优解 ,即
3. 假设零假设成立计算 ,然后结合第1步中得到的理论分布形式计算 值,判断此时计算出的 是否合理; 可以看作从 分布采样的一个样本,小概率事件在一次试验中几乎不可能发生。
对于检验特征重要性这个具体任务而言,显著性检验问题可以形式化为:
其中 是对特征重要性的一个度量,比如梯度或SHAP值等。然而,频率学派显著性检验方法存在两个主要问题:
  • 频率学派显著性检验方法的有效性依赖于对 的合理假设,然而,当真实的数据分布非常复杂时,我们很难做出贴近实际情况的精确假设。
  • 深度学习模型这类模型具有很强的拟合能力(万能逼近定理),但随着对 的假设更加复杂, 的理论分布形式也会变得非常复杂,这使得其难以计算,因此频率学派显著性检验方法经常假设 线性或某种核函数。

全贝叶斯显著性检验

全贝叶斯显著性检验(FBST,Full Bayesian Significance Testing)是一种在贝叶斯框架下检验假设是否成立的统计学方法,其中,“全”指的是我们仅需要利用参数的后验分布而无需对 的形式做出具体的假设。与频率学派计算 值判断零假设是否成立不同,FBST 根据先验知识和观测数据提供一个支持或反对零假设的证据(evidence)。
代表假设 的先验概率, 代表给定观测数据 下的似然概率,假设 的后验概率可以通过贝叶斯定理计算得到:
我们可以将公式中的 替换为具体的零假设 和备择假设 。上述公式与人们的认知过程是一致的,先验概率代表了我们根据经验得到的概率,通过不断地观测数据来纠正我们的认知,最终得到后验概率。上述公式的关键是确定一个好的估计器来拟合

检验统计量分布的近似

根据万能逼近定理,神经网络在理论上可以无限逼近任意函数。在本文中,我们采用贝叶斯神经网络拟合 贝叶斯神经网络(BNN,Bayesian Neural Network)是将贝叶斯定理和神经网络相结合的一项技术,它可以拟合复杂的关系,其参数 服从某种概率分布用来表示我们对网络参数取不同值的信念。
贝叶斯神经网络的训练:给定数据集 nFBST 利用贝叶斯神经网络拟合数据集 。首先,贝叶斯神经网络的参数 具有先验概率 ,然后根据贝叶斯定理,参数分布逐渐修正为适应观测数据 的后验概率:

其中 是参数 可以取值的整个参数空间。
贝叶斯神经网络的预测给定一个新的样例 ,通过贝叶斯神经网络得到的预测结果是在整个参数后验概率分布上的积分,也即所有参数的加权平均:
在训练完贝叶斯神经网络之后,基于参数 的后验概率分布,我们进一步获得检验统计量 的后验概率分布 。此时,显著性检验问题表示为如下形式:
我们定义 整个取值空间,即 。然后,定义 的概率分布中大于零点处概率的区域表示为:
在零假设下, 应该是后验概率最大的情况。根据 [Stern 1999] 提出的方法,我们可以通过如下公式获得支持零假设的贝叶斯证据:
根据 Monte Carlo 方法,上述公式可以进一步简化为

其中, 是基于 的概率分布随机采样得到的 个样本点。贝叶斯证据取值介于0到1之间,越接接近于1,越倾向于接受零假设 ;越接近于0,越倾向于拒绝零假设 在附录部分,我们严格证明了在某些约束条件下,当样本大小趋于无穷时,无意义特征的贝叶斯证据趋于 1。


具体实现

计算检验统计量的分布

完整的检验流程基于参数 的后验概率分布。然而,公式(6)中的积分在实际中很难求解,常用的一种方法是变分推断(VI,Variational Inference)。变分推断的核心是通过易于处理的变分分布来近似代替难以求解的后验分布。具体而言,首先指定变分族 ,包含了变分分布 所有可能的情况,即 ,其中 是变分分布的参数, 是其取值空间。最优的变分分布通过最小化变分分布与后验分布之间的“距离”得到:

两个分布之间的距离采用 KL 散度衡量。


本文采用了在现有工作中广泛应用的对角高斯分布作为变分族,公式(6)在化简之后为
第一项代表和数据相关的损失,比如在回归任务中与按比例因子缩放之后的均方误差损失(MSE,Mean Squared Error)等价;第二项是只与参数 相关的项,类似于损失函数中的正则化项;第三项在确定数据集之后为常数。
至此,我们得到了用于近似参数 的后验分布 的变分分布
我们采用核密度估计(KDE,Kernel Density Estimation)来估计检验统计量 的概率分布,具体步骤如下:
1. 从参数 的变分分布 中随机采样 次得到参数 个样本
2. 基于第1步得到的 个样本计算检验统计量的 个样本
3. 基于第2步得到的 个样本,采用核密度估计方法近似检验统计量 的概率密度函数
其中, 是核函数, 是窗口大小(也称为带宽)。
至此,我们得到了检验统计量 的概率密度函数 最后,通过计算公式(11)中的贝叶斯证据,我们完成了整体流程。
在上述实现中,我们采用了变分推断和核密度估计两种方法,它们的目的分别是得到参数的概率分布以及进而得到检验统计量的概率密度函数。我们推导出了采用变分推断的损失函数具体形式,变分分布与后验分布之间的近似程度可以通过预测误差来衡量;此外,KDE坚实的理论基础也保证了它的收敛性和一致性;因此,我们方法的整体误差维持在一个合理范围内。

检验统计量的设计

为了检验一个特征 的显著性,我们需要设计相应的检验统计量来表示 之间的关系。nFBST 足够灵活可以用来检验全局、局部和逐样本的显著性,因此支持设计不同类型的检验统计量。
在 [Horel 2020] 论文中,采用 偏导数的加权平均值作为检验统计量:

该统计量反应的是整个数据集上全局显著性,当数据确定之后它的值也随之确定。
在非线性场景下,一个特征的显著性随着所取子集范围的不同也可能不同。考虑一个简单的例子:

其中 此时,公式(14)对应的检验统计量为 而无需考虑 的具体取值。
如果我们定义 ,随着 范围的不同得到的检验统计量值也会变化,即

在公式(14.1)的例子中,如果我们定义 ,那么我们可以得到 。可以发现,随着 取值范围的的不同,局部显著性也会有所不同:在 的设定下, 的影响不显著;而在 的设定下, 的影响显著。
进一步地,如果我们取 仅包含一个数据,那么对应得到逐样本显著性检验,对应统计量为:

此外,nFBST 除了支持上述检验统计量不同粒度的设计,还可以选取不同的指标作为特征重要性度量,比如将公式(14,15,16)中的偏导数换为 SHAP值、DeepLIFT 值、LRP 值等。

实验

Toy Example

一个简单的仿真数据集场景下比较检验效果,数据生成过程服从如下公式:



  • 对比频率学派显著性检验方法,只有Bootstrap准确识别 无意义,而另外两种未能准确识别;通常情况下,我们会设置一个显著性水平(比如 ),然后将其与 值进行比较,如果 值小于显著性水平就拒绝零假设,反之则无法拒绝。
  • 采用不同重要性度量的 nFBST 均表现良好,所有的 nFBST 对 都提供了很强的证据支持零假设,但对于其他特征则没有。
  • 逐样本显著性检验要比全局显著性检验粒度更细,我们挑选了 这个特征来具体研究。Figure 2绘制了通过 Grad-nFBST 获得的贝叶斯证据分布,通过散点图和直方图可以发现其分布基本与 相符。


仿真实验

数据生成过程服从以下公式:
其中 是随机化的一个神经网络,但对于后 50 个特征我们控制第一层的权重全为 0 从而保证它们始终无意义。

在本节的实验中,我们将检验结果视作一个二分类任务,然后采用二分类任务中常用的指标(如Precision,Recall,F1-score)来比较。具体而言,特征有意义为正类,无意义为负类。我们从两个粒度进行比较:

Global.(Table 2) ① Bootstrap更倾向于将特征判断为有意义,因此Recall很高,但Precision很低;② likelihood ratio test更倾向于将特征判断为无意义,因此Precision很高,但Recall很低;③ 综合来看,t-test要比另外两种频率学派检验方法表现更好,而我们本文提出的方法更是在所有情况下均表现最优。

Instance-wise.(Figure 3)对于 instance-wise 粒度,我们首先根据 求导的结果设置一个阈值 eps 来对每个数据的每个特征是否有意义打标签。
1. 在各种阈值 eps 设置下,我们本文提出的方法均优于在应用显著性检验方法之前的特征重要性方法,nFBST 增强了判别有意义和无意义特征的能力。
2. LIME 和 LIME-nFBST 要相比其他方法表现稍微差些,这是因为其他方法都是基于反向传播的方法,而 LIME 是基于扰动采样构建局部线性模型的方法,和采样效率有很大关系。

真实数据集实验

我们在 UCI 标准数据集 Energy Efficiency 数据集上进行实验,重点分析 (玻璃面积)在不同 (玻璃朝向)取值下的检验结果。(Figure 4)
时与另外五种取值的情况检验情况有明显区别:当 时,它的实际含义是没有玻璃,因此不论此时 是什么值都没有什么关系,这与检验结果相符。

我们在 MNIST 数据集上进行实验,根据特征重要性生成显著性图和根据检验结果标注有意义特征,可以发现在应用 nFBST 之后识别效果更加显著。



总结
在本文中,我们提出面向神经网络的全贝叶斯显著性检验方法,称为 nFBST。它是一个通用框架,可以基于不同的重要性度量进行扩展。据我们所知,本篇工作首次将显著性检验引入深度神经网络,对于探索数据生成过程的真实关系具有重要意义。
实验室介绍:BIGSCity 实验室是北京航空航天大学大学计算机学院下属的北航智慧城市兴趣组,其负责人为北京航空航天大学计算机学院王静远教授。BIGSCity 小组致力于研究机器学习与数据挖掘在城市科学、社会科学等领域的交叉应用技术,包括城市计算,时空数据挖掘,机器学习可解释性,以及 AI 在交通、健康、金融等领域的应用等。详细情况参见研究组主页:https://www.bigscity.com/。


更多阅读




#投 稿 通 道#

 让你的文字被更多人看到 



如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。


总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 


PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。


📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算


📬 投稿通道:

• 投稿邮箱:[email protected] 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿


△长按添加PaperWeekly小编



🔍


现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧


·
·

微信扫码关注该文公众号作者

来源:PaperWeekly

相关新闻

顶刊TPAMI 2024!北大林宙辰团队提出具有万有逼近性质的神经网络架构的设计方法AAAI 2024 | 通用图扩散框架:建立不同图神经网络与扩散方程之间的关系一阶优化算法启发,北大林宙辰团队提出具有万有逼近性质的神经网络架构设计方法ICML 2024 | DMS:直接可微的网络搜索方法,最快仅需单卡10分钟!AAAI 2024 Oral|打破边界!利用CLIP的多任务多模态视频行为识别方法AAAI 2024 | 清华提出DRM:无偏差的新类发现与定位新方法华人注意!又一传染病在澳肆虐,“没有治疗方法”!全澳40%案例来自新州,创自2024初以来的新高…国家药监局关于发布《化妆品中双氟拉松丙酸酯的测定》化妆品补充检验方法的公告国家药监局关于将牙膏pH值的检验方法等15项检验方法纳入化妆品安全技术规范(2015年版)的通告最重要的科学统计检验方法,源自一家啤酒厂首个通用双向Adapter多模态目标追踪方法BAT,入选AAAI 2024贾樟柯带着迄今为止最大胆的叙事方法,重返北美30%参数达到92%的表现,大模型稀疏化方法显神通习惯性打压自己的人,用这个方法自救AAAI 2024 北大提出BEV-MAE:高效的LiDAR感知模型预训练策略AAAI 2024 | SO2:从Q值估计的角度重新审视Offline to Online RL今日Arxiv最热NLP大模型论文:MIT推出新方法,大幅提升LLMs的连贯性、准确性和可更新性!ACM MM 2024 | 突破传统方法局限!用语义正确性评估视觉问答生成结果2024下半年:过极简生活的18个方法NAACL 2024 | 基于LLM的问答系统:表格转文本方法为什么能成功?比LoRA还快50%的微调方法来了!一张3090性能超越全参调优,UIUC联合LMFlow团队提出LISAICLR 2024 | 连续学习不怕丢西瓜捡芝麻,神经形态方法保护旧知识AAAI 2024 | 上交等提出自适应间距强化对比学习,增强多个模型的分类能力觉得您 2024 年的退税太少?这里有一个简单的方法让您明年获得更多!
logo
联系我们隐私协议©2024 bendi.news
Bendi新闻
Bendi.news刊载任何文章,不代表同意其说法或描述,仅为提供更多信息,也不构成任何建议。文章信息的合法性及真实性由其作者负责,与Bendi.news及其运营公司无关。欢迎投稿,如发现稿件侵权,或作者不愿在本网发表文章,请版权拥有者通知本网处理。